Ultraviolet-B exposure and exogenous hydrogen peroxide application lead to cross-tolerance toward drought in Nicotiana tabacum L.

PHYSIOLOGIA PLANTARUM(2021)

引用 12|浏览5
暂无评分
摘要
Acclimation of plants to water deficit involves biochemical and physiological adjustments. Here, we studied how ultraviolet (UV)-B exposure and exogenously applied hydrogen peroxide (H2O2) potentiates drought tolerance in tobacco (Nicotiana tabacum L. cv. xanthi nc). Separate and combined applications for 14 days of 1.75 kJ m(-2) day(-1) UV-B radiation and 0.2 mM H2O2 were assessed. Both factors, individually and combined, resulted in inhibition of growth. Furthermore, the combined treatment led to the most compacted plants. UV-B- and UV-B + H2O2-treated plants increased total antioxidant capacity and foliar epidermal flavonol index. H2O2- and UV-B + H2O2-pre-treated plants showed cross-tolerance to a subsequent 7-day moderate drought treatment, which was assessed as the absence of negative impact on growth, leaf wilting, and leaf relative water content. Plant responses to the pre-treatment were notably different: (1) H2O2 increased the activity of catalase (EC 1.11.1.6), phenylalanine ammonia lyase (EC 4.3.1.5), and peroxidase activities (EC 1.11.1.7), and (2) the combined treatment induced epidermal flavonols which were key to drought tolerance. We report synergistic effects of UV-B and H2O2 on transcription accumulation of UV RESISTANCE LOCUS 8, NAC DOMAIN PROTEIN 13 (NAC13), and BRI1-EMS-SUPPRESSOR 1 (BES1). Our data demonstrate a pre-treatment-dependent response to drought for NAC13, BES1, and CHALCONE SYNTHASE transcript accumulation. This study highlights the potential of combining UV-B and H2O2 to improve drought tolerance which could become a useful tool to reduce water use.
更多
查看译文
关键词
Antioxidant Enzymes,Cross-tolerance,Drought,Flavonoids,Hydrogen Peroxide,Nicotiana tabacum,Reactive Oxygen Species,Ultraviolet-B radiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要