Predicting Energetics Materials' Crystalline Density From Chemical Structure By Machine Learning

JOURNAL OF CHEMICAL INFORMATION AND MODELING(2021)

引用 20|浏览7
暂无评分
摘要
To expedite new molecular compound development, a long-sought goal within the chemistry community has been to predict molecules' bulk properties of interest a priori to synthesis from a chemical structure alone. In this work, we demonstrate that machine learning methods can indeed be used to directly learn the relationship between chemical structures and bulk crystalline properties of molecules, even in the absence of any crystal structure information or quantum mechanical calculations. We focus specifically on a class of organic compounds categorized as energetic materials called high explosives (HE) and predicting their crystalline density. An ongoing challenge within the chemistry machine learning community is deciding how best to featurize molecules as inputs into machine learning models-whether expert handcrafted features or learned molecular representations via graph-based neural network models-yield better results and why. We evaluate both types of representations in combination with a number of machine learning models to predict the crystalline densities of HE-like molecules curated from the Cambridge Structural Database, and we report the performance and pros and cons of our methods. Our message passing neural network (MPNN) based models with learned molecular representations generally perform best, outperforming current state-of-the-art methods at predicting crystalline density and performing well even when testing on a data set not representative of the training data. However, these models are traditionally considered black boxes and less easily interpretable. To address this common challenge, we also provide a comparison analysis between our MPNN-based model and models with fixed feature representations that provides insights as to what features are learned by the MPNN to accurately predict density.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要