Chemogenetic stimulation of proprioceptors remodels lumbar interneuron excitability and promotes motor recovery after SCI.

Molecular therapy : the journal of the American Society of Gene Therapy(2021)

引用 8|浏览3
暂无评分
摘要
Motor recovery after severe spinal cord injury (SCI) is limited due to the disruption of direct descending commands. Despite the absence of brain-derived descending inputs, sensory afferents below injury sites remain intact. Among them, proprioception acts as an important sensory source to modulate local spinal circuits and determine motor outputs. Yet, it remains unclear whether enhancing proprioceptive inputs promotes motor recovery after severe SCI. Here, we first established a viral system to selectively target lumbar proprioceptive neurons and then introduced the excitatory Gq-coupled Designer Receptors Exclusively Activated by Designer Drugs (DREADD) virus into proprioceptors to achieve specific activation of lumbar proprioceptive neurons upon CNO administration. We demonstrated that chronic activation of lumbar proprioceptive neurons promoted the recovery of hindlimb stepping ability in a bilateral hemisection SCI mouse model. We further revealed that chemogenetic proprioceptive stimulation led to coordinated activation of proprioception-receptive spinal interneurons and facilitated transmission of supraspinal commands to lumbar motor neurons, without affecting the regrowth of proprioceptive afferents or brain-derived descending axons. Moreover, application of 4-aminopyridine-3-methanol (4-AP-MeOH) that enhances nerve conductance further improved the transmission of supraspinal inputs and motor recovery in proprioception-stimulated mice. Our study demonstrates that proprioception-based combinatorial modality may be a promising strategy to restore the motor function after severe SCI.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要