Asymmetric Total Synthesis And Biosynthetic Implications Of Perovskones, Hydrangenone, And Hydrangenone B

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2021)

引用 26|浏览2
暂无评分
摘要
Perovskones and hydrangenones are a family of structurally complex triterpenoids that were mainly isolated from the genus Salvia medicinal plants. These isoprenoids exhibit a broad range of biological activities, such as antitumor and antiplasmodial activities. Here, we report the collective total synthesis of perovskone, perovskones C, D, F, hydrangenone, and hydrangenone B. The key strategies in this work include the following: (1) an asymmetric photoenolization/Diels-Alder reaction was developed to construct a tricyclic ring bearing three contiguous quaternary centers, which was used to build the core icetexane skeleton; (2) a bioinspired Diels-Alder reaction of perovskatone D with trans-alpha-ocimene was applied to stereospecifically generate perovskones; (3) late-stage oxidations and ring forming steps were developed to synthesize perovskones and hydrangenones. Our synthetic work suggests that (1) perovskatone D may serve as the precursor of the biosynthesis of perovskones and (2) the formation of hydrangenone and hydrangenone B, containing a five-membered D ring, may involve an oxidative ring cleavage and ring regeneration process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要