Novel Nir-Ii Semiconducting Molecule Incorporating Sorafenib For Imaging Guided Synergetic Cancer Phototherapy And Anti-Angiogenic Therapy Dagger

JOURNAL OF MATERIALS CHEMISTRY B(2021)

引用 11|浏览2
暂无评分
摘要
Tumor tissues are not only independent of cancer cells, but also tumor blood vessels. Thus, targeting the tumor blood vessels is as important as targeting the tumor for cancer treatment. Herein, an organic semiconducting molecule named T8IC is developed for the potential phototeranostics in the second near-infrared window (NIR-II, 1000-1700 nm). The T8IC molecule with an electronic-rich core and electron-deficient side edge shows a typical semiconducting structure, which makes the bandgap narrow. With the addition of anti-angiogenic agent sorafenib into T8IC, TS nanoparticles (NPs) were formed by nanoprecipitation with synergetic anti-angiogenic and phototheranostic effects. Compared to the molecular state, the J-aggregative TS NPs were formed with great bathochromic-shifts in both the absorption spectrum (maximum increased from 755 nm to 826 nm) and the emission spectrum (maximum increased from 840 nm to 1030 nm), which endow them with the ideal deep tumor NIR-II fluorescence imaging ability. Besides, TS NPs present both high photothermal conversion efficiency (similar to 32.47%) and good ROS generation ability, making them possess excellent cancer phototherapy capability. Guided by NIR-II fluorescence imaging, the tumor blood vessels can be cut off via sorafenib and cancer cells can be killed via T8IC simultaneously, making TS NPs show promising potential for the synergistic therapeutic effect in clinical applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要