Atomistic investigation of surface characteristics and electronic features at high-purity FeSi(110) presenting interfacial metallicity.

Proceedings of the National Academy of Sciences of the United States of America(2021)

引用 9|浏览14
暂无评分
摘要
Iron silicide (FeSi) is a fascinating material that has attracted extensive research efforts for decades, notably revealing unusual temperature-dependent electronic and magnetic characteristics, as well as a close resemblance to the Kondo insulators whereby a coherent picture of intrinsic properties and underlying physics remains to be fully developed. For a better understanding of this narrow-gap semiconductor, we prepared and examined FeSi(110) single-crystal surfaces of high quality. Combined insights from low-temperature scanning tunneling microscopy and density functional theory calculations (DFT) indicate an unreconstructed surface termination presenting rows of Fe-Si pairs. Using high-resolution tunneling spectroscopy (STS), we identify a distinct asymmetric electronic gap in the sub-10 K regime on defect-free terraces. Moreover, the STS data reveal a residual density of states in the gap regime whereby two in-gap states are recognized. The principal origin of these features is rationalized with the help of the DFT-calculated band structure. The computational modeling of a (110)-oriented slab notably evidences the existence of interfacial intragap bands accounting for a markedly increased density of states around the Fermi level. These findings support and provide further insight into the emergence of surface metallicity in the low-temperature regime.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要