Shape switching of CaCO3-templated nanorods into stiffness-adjustable nanocapsules to promote efficient drug delivery.

Acta biomaterialia(2021)

引用 14|浏览1
暂无评分
摘要
Geometry and mechanical property have emerged as important parameters in designing nanocarriers, in addition to their size, surface charge, and hydrophilicity. However, inconsistent and even contradictory demands regarding the shape and stiffness of nanoparticles have been noted in blood circulation, tumor accumulation, and tumor cell internalization. Herein, CaCO3 nanorods (NRs) with an aspect ratio of around 2.4 are assembled with hyaluronic acid (HA) hydrogel layers to prepare CaCO3@HA NRs. The rod geometry enables lower recognition by macrophages and higher extravasation into tumor tissues than the spherical counterpart. In response to the slightly acidic tumor matrix, the acid-labile removal of CaCO3 templates achieves shape switching into spherical HA nanocapsules (NCs). The shape switchable CaCO3@HA NRs show significantly higher uptake and cytotoxicities to 4T1 cells than CaCO3-Si@HA NRs with silica layers on CaCO3 cores to inhibit shape switching. In addition, HA NCs with 2 - 8 layers of HA hydrogels exhibit stiffness from 1.85 to 12.3 N/m, and the assembly of 4 layers shows 2- to 3-fold higher cellular uptake than those of other NCs. The shape shift satisfies long-term blood circulation of NRs, and the resulting stiffness-adjustable NCs promote tissue infiltration and intracellular accommodation, resulting in a 4-fold higher drug accumulation in tumors. The CaCO3@HA NR treatment significantly suppresses tumor growth; prolongs animal survival; inhibits lung metastasis; and eliminates systemic toxicities to blood, liver, kidney, and heart tissues. This study achieves a comprehensive understanding of the shape and stiffness effects and demonstrates a hierarchical targeting strategy to address the multiple delivery barriers for chemotherapeutic agents. STATEMENT OF SIGNIFICANCE: The different barriers involved in the drug delivery pathway have inconsistent and even contradictory demands on the shape and stiffness of nanoparticles. In the current study, in situ switching of nanorods (NRs) into spherical nanocapsules (NCs) in tumor tissues is proposed to address these dilemmas. The NR shape ensures long-term blood circulation and high tumor tissue accumulation, while the in situ switching into NCs promotes tissue infiltration and cellular internalization. NCs with different numbers of hydrogel layers also provide a robust system wherein NC stiffness is controlled as a single variable to study stiffness-dependent cellular behaviors. Thus, this straightforward design offers a comprehensive understanding of how the shape and stiffness of nanocarriers affect their biological pathways.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要