Ti-Cu Coatings Deposited By A Combination Of Hipims And Dc Magnetron Sputtering: The Role Of Vacuum Annealing On Cu Diffusion, Microstructure, And Corrosion Resistance

COATINGS(2020)

引用 3|浏览2
暂无评分
摘要
Titanium-copper (Ti-Cu) coatings have attracted extensive attention in the surface modification of industrial and biomedical materials due to their excellent physical and chemical properties and biocompatibility. Here, Ti-Cu coatings are fabricated using a combination of high-power pulsed magnetron sputtering (HPPMS; also known as high power impulse magnetron sputtering (HiPIMS)) and DC magnetron sputtering followed by vacuum annealing at varied temperatures (300, 400, and 500 degrees C). X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) data showed that Ti, Cu, and CuTi3 are mainly formed in the coatings before annealing, while Ti3O, Cu2O, and CuTi3 are the main compounds present in the annealed coatings. The cross-sectional TEM micrographs and corresponding EDS results provided evidence that Ti is mainly present on the surface and interfaces of the silicon substrate and the Ti-Cu coatings annealed at 500 degrees C, while the bulk of the coatings is enriched with Cu. The resistivity of the coatings decreased with increasing the annealing temperature from 300 to 500 degrees C. Based on self-corrosion current density data, the Ti-Cu coating annealed at 300 degrees C showed similar corrosion performance compared to the as-deposited Ti-Cu coating, while the corrosion rate increased for the Ti-Cu coatings annealed at 400 and 500 degrees C. Stable release of copper ions in PBS (cumulative released concentration of 0.8-1.0 mu M) for up to 30 days was achieved for all the annealed coatings. Altogether, the results demonstrate that vacuum annealing is a simple and viable approach to tune the Cu diffusion and microstructure of the Ti-Cu coatings, thereby modulating their electrical resistivity, corrosion performance, and Cu ion release behavior.
更多
查看译文
关键词
vacuum annealing, HiPIMS, Ti&#8211, Cu coatings, Cu diffusion, corrosion behavior, copper ion release
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要