Nanoscale Measurements of Elastic Properties and Hydrostatic Pressure in H2‐Bulged MoS2 Membranes

Advanced Materials Interfaces(2020)

引用 21|浏览3
暂无评分
摘要
The combination of extremely high stiffness and bending flexibility with tunable electrical and optical properties makes van der Waals transition metal dichalcogenides appealing both for fundamental science and applied research. By taking advantage of localized H-2-bulged MoS(2)membranes, an innovative approach, based on atomic force microscopy nanoindentation, is demostrated and discussed here, aiming at measuring elastic and thermodynamic properties of nanoblisters made of 2D materials. The results, interpreted in the membrane limit of the Foppl-von Karman equation, lead to the quantification of the internal pressure and mole number of the trapped H(2)gas, as well as of the stretching modulus and adhesion energy of the MoS(2)membrane. The latter is discussed in the limit of strong (clamped and fully bonded interlayer interface) shear, as experimentally achieved in the investigated H-2-bulged 2D blisters. Moreover, this approach allows to quantify the stress, and consequently the strain, locally imposed to the MoS(2)membrane by the bulging of the domes.
更多
查看译文
关键词
2D materials, adhesion energy, bulged membranes, nanoindentation AFM, strains
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要