Tuning Molecular Superlattice By Charge-Density-Wave Patterns In Two-Dimensional Monolayer Crystals

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2021)

引用 9|浏览27
暂无评分
摘要
Charge density wave (CDW) in two-dimensional (2D) crystals plays a vital role in tuning the interface structures and properties. However, how the CDW tunes the self-assembled molecular superlattice still remains unclear. In this study, we investigated the self-assembled manganese phthalocyanine (MnPc) molecular superlattice on single-layered 1T- and 2H-NbSe2 crystals under regulation by distinct CDW patterns. We observe that, in low coverage, MnPc molecules preferentially adsorb on 2H-NbSe2 compared to 1T-NbSe2. With increasing coverage, MnPc can form a highly ordered superlattice on 2H-NbSe2; however, it is randomly distributed on 1T-NbSe2. We reveal a perfect geometric commensurability between the molecular superlattice and intrinsic CDW pattern in 2H-NbSe2 and a poor commensurability for that of 1T-NbSe2. We believe that the subtly different geometric commensurability dominates the different adsorption and arrangement of the molecular superlattices on 2D CDW patterns. Our study provides a pioneering approach for tuning the molecular superlattices using the CDW patterns.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要