Heat shock protein 90 inhibitor ameliorates pancreatic fibrosis by degradation of transforming growth factor-β receptor.

Cellular signalling(2021)

引用 7|浏览5
暂无评分
摘要
BACKGROUND AND AIM:Pancreatic fibrosis increases pancreatic cancer risk in chronic pancreatitis (CP). Pancreatic stellate cells (PSCs) play a critical role in pancreatic fibrosis by transforming growth factor-β (TGFβ) has been shown to inhibit transforming growth factor-β receptor (TGFβR)-mediated Smad and no-Smad signaling pathways. Thus, the effects of Hsp90 inhibitor on pancreatic fibrosis are evaluated in CP mice, and the association between Hsp90 and biological functions of PSCs is further investigated in vitro. METHODS:The effects of Hsp90 inhibitor 17AAG on pancreatic fibrosis were assessed in caerulein-induced CP mice, and primary PSCs were used to determine the role of Hsp90 inhibitor 17AAG in vitro. RESULTS:We observed increased expression of Hsp90 in pancreatic tissues of caerulein-induced CP mice. Hsp90 inhibitor 17AAG ameliorated pancreatic inflammation and fibrosis in caerulein-induced CP mice. In vitro, Hsp90 inhibitor 17AAG inhibited TGFβ1-induced activation and extracellular matrix accumulation of PSCs by blocking TGFβR-mediated Smad2/3 and PI3K /Akt/GSK-3β signaling pathways.Hsp90 inhibitor 17AAG degraded TGFβRII by a ubiquitin-proteasome pathway, co-immunoprecipitation showed an interaction between Hsp90 and TGFβRII in PSCs. CONCLUSIONS:The study suggests that an Hsp90 inhibitor 17AAG remarkable prevents the development of pancreatic fibrosis in caerulein-induced CP mice, and suppresses activation and extracellular matrix accumulation of PSCs in vitro. The current results provide a potential treatment strategy based on Hsp90 inhibition for pancreatic fibrosis in CP.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要