Direct Potentiometric Study of Cationic and Nonionic Surfactants in Disinfectants and Personal Care Products by New Surfactant Sensor Based on 1,3-Dihexadecyl-1H-benzo[d]imidazol-3-ium.

Molecules (Basel, Switzerland)(2021)

引用 8|浏览1
暂无评分
摘要
A novel, simple, low-cost, and user-friendly potentiometric surfactant sensor based on the new 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DHBI-TPB) ion-pair for the detection of cationic surfactants in personal care products and disinfectants is presented here. The new cationic surfactant DHBI-Br was successfully synthesized and characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectrometry, liquid chromatography-mass spectrometry (LC-MS) and elemental analysis and was further employed for DHBI-TPB ion-pair preparation. The sensor gave excellent response characteristics for CTAB, CPC and Hyamine with a Nernstian slope (57.1 to 59.1 mV/decade) whereas the lowest limit of detection (LOD) value was measured for CTAB (0.3 × 10-6 M). The sensor exhibited a fast dynamic response to dodecyl sulfate (DDS) and TPB. High sensor performances stayed intact regardless of the employment of inorganic and organic cations and in a broad pH range (2-11). Titration of cationic and etoxylated (EO)-nonionic surfactant (NSs) (in Ba2+) mixtures with TPB revealed the first inflexion point for a cationic surfactant and the second for an EO-nonionic surfactant. The increased concentration of EO-nonionic surfactants and the number of EO groups had a negative influence on titration curves and signal change. The sensor was successfully applied for the quantification of technical-grade cationic surfactants and in 12 personal care products and disinfectants. The results showed good agreement with the measurements obtained by a commercial surfactant sensor and by a two-phase titration. A good recovery for the standard addition method (98-102%) was observed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要