Body Size And Behavioural Plasticity Interact To Influence The Performance Of Free-Foraging Bumble Bee Colonies

INSECTS(2021)

引用 10|浏览4
暂无评分
摘要
Simple SummaryBehavioural specialisation of individuals may improve the performance of groups, but could also limit the ability to switch tasks (behavioural 'plasticity') in response to changing group needs. In bumble bee colonies, body size, which is fixed once the bees reach adulthood, influences the tasks that bees perform, meaning that large and small bees often act as specialists. We found that when we experimentally reduced the body-size variation of colonies, some performed less well than normal. Nonetheless, in other colonies, individuals increased task specialisation or effort, which apparently compensated for the absence of large and small workers. These results suggest that both behavioural specialisation and plasticity can be important in collective group performance.Specialisation and plasticity are important for many forms of collective behaviour, but the interplay between these factors is little understood. In insect societies, workers are often developmentally primed to specialise in different tasks, sometimes with morphological or physiological adaptations, facilitating a division of labour. Workers may also plastically switch between tasks or vary their effort. The degree to which developmentally primed specialisation limits plasticity is not clear and has not been systematically tested in ecologically relevant contexts. We addressed this question in 20 free-foraging bumble bee (Bombus terrestris) colonies by continually manipulating colonies to contain either a typically diverse, or a reduced ("homogeneous"), worker body size distribution while keeping the same mean body size, over two trials. Pooling both trials, diverse colonies produced a larger comb mass, an index of colony performance. The link between body size and task was further corroborated by the finding that foragers were larger than nurses even in homogeneous colonies with a very narrow body size range. However, the overall effect of size diversity stemmed mostly from one trial. In the other trial, homogeneous and diverse colonies showed comparable performance. By comparing behavioural profiles based on several thousand observations of individuals, we found evidence that workers in homogeneous colonies in this trial rescued colony performance by plastically increasing behavioural specialisation and/or individual effort, compared to same-sized individuals in diverse colonies. Our results are consistent with a benefit to colonies of large and small specialists under certain conditions, but also suggest that plasticity or effort can compensate for reduced (size-related) specialisation. Thus, we suggest that an intricate interplay between specialisation and plasticity is functionally adaptive in bumble bee colonies.
更多
查看译文
关键词
social insects, individual variability, colony composition, colony manipulation, task allocation, continuous size distribution, response threshold
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要