Identification Of Redox-Sensitive Transcription Factors As Markers Of Malignant Pleural Mesothelioma

CANCERS(2021)

引用 4|浏览12
暂无评分
摘要
Simple SummaryMalignant pleural mesothelioma is a lung tumor associated with asbestos exposure, with a poor prognosis, and a difficult pharmacological approach. Asbestos exposure is very toxic for the lungs, which counteract this toxic effect by activating some antioxidant defense proteins. When these proteins are more active that in normal conditions, as in several cancers, these tumors become able to survive and resist to stress or chemotherapy. In our laboratory, we collected cellular samples of mesothelioma and non-transformed mesothelium from Hospital's Biobank and we evaluated these proteins. Our results demonstrated these proteins are upregulated in mesothelioma cells and not in non-transformed mesothelium. This event could be associated to toxic effects evoked by asbestos exposure, highlighting the need in the future to monitor asbestos-exposed people by measuring biomarkers identified, in the attempt to identify them as possible predictive markers and potential pharmacological targets addressed to improve mesothelioma prognosis.Although asbestos has been banned in most countries around the world, malignant pleural mesothelioma (MPM) is a current problem. MPM is an aggressive tumor with a poor prognosis, so it is crucial to identify new markers in the preventive field. Asbestos exposure induces oxidative stress and its carcinogenesis has been linked to a strong oxidative damage, event counteracted by antioxidant systems at the pulmonary level. The present study has been focused on some redox-sensitive transcription factors that regulate cellular antioxidant defense and are overexpressed in many tumors, such as Nrf2 (Nuclear factor erythroid 2-related factor 2), Ref-1 (Redox effector factor 1), and FOXM1 (Forkhead box protein M1). The research was performed in human mesothelial and MPM cells. Our results have clearly demonstrated an overexpression of Nrf2, Ref-1, and FOXM1 in mesothelioma towards mesothelium, and a consequent activation of downstream genes controlled by these factors, which in turn regulates antioxidant defense. This event is mediated by oxidative free radicals produced when mesothelial cells are exposed to asbestos fibers. We observed an increased expression of Nrf2, Ref-1, and FOXM1 towards untreated cells, confirming asbestos as the mediator of oxidative stress evoked at the mesothelium level. These factors can therefore be considered predictive biomarkers of MPM and potential pharmacological targets in the treatment of this aggressive cancer.
更多
查看译文
关键词
malignant pleural mesothelioma, mesothelium, oxidative stress, redox-sensitive factors, asbestos, biomarkers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要