Evaluation Of The Neuroprotective Effects Of Vitamin E On The Rat Substantia Nigra Neural Cells Exposed To Electromagnetic Field: An Ultrastructural Study

ELECTROMAGNETIC BIOLOGY AND MEDICINE(2021)

引用 2|浏览2
暂无评分
摘要
Electromagnetic fields (EMFs) could induce oxidative stress (OS) in human tissues. Lipid peroxidation (LPO) is the main hallmark of OS that harms neural cell components, primarily lipids in the myelin sheaths and membranes. Vitamin E is a lipophilic antioxidant that protects cells from OS-related damages and inhibits the LPO process. In this study, male rats were assigned into three groups of Control, EMF, and EMF+ Vitamin E. The EMF producer equipment produced an alternate current of 50 Hz, 3 Mili Tesla (mT). At the end of the experiment, half of the substantia nigra in every sample was used for measurement of the malondialdehyde (MDA) level as the end-product of the LPO and activity of superoxide dismutase (SOD) enzyme. The next half of the tissue was prepared for transmission electron microscopy (TEM). In the EMF group, MDA level was enhanced and SOD value decreased significantly compared to the control group, but Vitamin E could restore these changes. In rats undergone EMF, heterochromatic nucleus and destruction in some portions of the nuclear membrane were detected. The segmental separation or destruction of myelin sheath lamellae was observed in nerve fibers. In treated animals, the nucleus was round, less heterochromatic, with a regular membrane. Separation of myelin sheath lamellae in some nerve fibers was slighter than the radiation group. Considering the results, EMF exposure induces LPO and triggers ultrastructural changes in the cell membranes, nucleus, and myelin sheath of substantia nigra cells, but Vitamin E consumption weakens these neuropathological alterations.
更多
查看译文
关键词
Electromagnetic filed, Vitamin E, substantia nigra, neural cells, neuroprotective
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要