Reprogramming Lipid Metabolism Prevents Effector T Cell Senescence And Enhances Tumor Immunotherapy

SCIENCE TRANSLATIONAL MEDICINE(2021)

引用 79|浏览15
暂无评分
摘要
The functional state of T cells is a key determinant for effective antitumor immunity and immunotherapy. Cellular metabolism, including lipid metabolism, controls T cell differentiation, survival, and effector functions. Here, we report that development of T cell senescence driven by both malignant tumor cells and regulatory T cells is a general feature in cancers. Senescent T cells have active glucose metabolism but exhibit unbalanced lipid metabolism. This unbalanced lipid metabolism results in changes of expression of lipid metabolic enzymes, which, in turn, alters lipid species and accumulation of lipid droplets in T cells. Tumor cells and Treg cells drove elevated expression of group IVA phospholipase A(2), which, in turn, was responsible for the altered lipid metabolism and senescence induction observed in T cells. Mitogen-activated protein kinase signaling and signal transducer and activator of transcription signaling coordinately control lipid metabolism and group IVA phospholipase A(2) activity in responder T cells during T cell senescence. Inhibition of group IVA phospholipase A(2) reprogrammed effector T cell lipid metabolism, prevented T cell senescence in vitro, and enhanced antitumor immunity and immunotherapy efficacy in mouse models of melanoma and breast cancer in vivo. Together, these findings identify mechanistic links between T cell senescence and regulation of lipid metabolism in the tumor microenvironment and provide a new target for tumor immunotherapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要