Promiscuous Phospholipid Biosynthesis Enzymes In The Plant Pathogen Pseudomonas Syringae

BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS(2021)

引用 7|浏览1
暂无评分
摘要
Bacterial membranes are primarily composed of phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL). In the canonical PE biosynthesis pathway, phosphatidylserine (PS) is decarboxylated by the Psd enzyme. CL formation typically depends on CL synthases (Cls) using two PG molecules as substrates. Only few bacteria produce phosphatidylcholine (PC), the hallmark of eukaryotic membranes. Most of these bacteria use phospholipid N-methyltransferases to successively methylate PE to PC and/or a PC synthase (Pcs) to catalyze the condensation of choline and CDP-diacylglycerol (CDP-DAG) to PC. In this study, we show that membranes of Pseudomonas species able to interact with eukaryotes contain PE, PG, CL and PC. More specifically, we report on PC formation and a poorly characterized CL biosynthetic pathway in the plant pathogen P. syringae pv. tomato. It encodes a Pcs enzyme responsible for choline-dependent PC biosynthesis. CL formation is catalyzed by a promiscuous phospholipase D (PLD)-type enzyme (PSPTO_0095) that we characterized in vivo and in vitro. Like typical bacterial CL biosynthesis enzymes, it uses PE and PG for CL production. This enzyme is also able to convert PE and glycerol to PG, which is then combined with another PE molecule to synthesize CL. In addition, the enzyme is capable of converting ethanolamine or methylated derivatives into the corresponding phospholipids such as PE both in P. syringae and in E. coli. It can also hydrolyze CDP-DAG to yield phosphatidic acid (PA). Our study adds an example of a promiscuous Cls enzyme able to synthesize a suite of products according to the available substrates.
更多
查看译文
关键词
Phospholipids, Phosphatidylethanolamine, Cardiolipin, Cardiolipin synthase, Phosphatidylcholine, Phospholipase D, Pseudomonas
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要