Tubular Mosse/Carbon Nanotube Electrodes For Hybrid-Ion Capacitors

ELECTROCHIMICA ACTA(2021)

引用 7|浏览5
暂无评分
摘要
We report the tubular shape of molybdenum sulfide selenide (MoSSe) alloy on the carbon nanotubes (CNTs) as lithium (Li) storage materials. Two to five layers of MoSSe alloy have an interlayer spacing of similar to 6.6 A and coaxially coat the CNT. After Li ion is intercalated to the MoSSe layers, Li2S, Li2Se, and metallic Mo nanoparticles are irreversibly deposited on the CNT electrodes by a chemical conversion process. Galvanostatic cycling tests perform Li2S/Li2Se faradaic reaction at similar to 2.2 V vs. Li/Li+ and capacitive processes below similar to 1.3 V arising from physical adsorption of Li+ on Mo, Li2S, and Li2Se nanoparticles, and electrolyte decomposition. As a result, tubular MoSSe/CNT electrodes exhibit stable cyclability for over 200 cycles, the capacity of 663 mAh g(-1), and excellent rate capability that is two-fold greater at 20 A g(-1) than that of the MoS2 sheet partially wrapping the CNT. It is attributed to stable Li2S/Li2Se redox reaction without any dissolution of polysulfides/polyselenides, respectively, low charge-transfer resistance, and retardation of electrolyte decomposition. These findings suggest that the tubular MoSSe/CNT nanocomposites act as promising electrodes for hybrid-ion capacitors. (c) 2021 Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
MoSSe, MoS2, Carbon nanotube, Hybrid-ion capacitors, Batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要