Development Of A Hydraulic Driven Bionic Soft Gecko Toe

JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME(2021)

引用 2|浏览4
暂无评分
摘要
Geckos can climb freely on various types of surfaces using their flexible and adhesive toes. Gecko-inspired robots are capable of climbing on different surface conditions and have shown many important applications. Nonetheless, due to poor flexibility of toes, the movements of gecko-inspired robots are restricted to flat surfaces. To improve the flexibility, by utilizing design technique of soft actuator and incorporating the characteristics of a real gecko's toe, the design of new bionic soft toes is proposed. The abilities of this bionic toe are verified using modeling and two soft toes are manufactured. One is Type A toe having varied semi-circle cross sections as the feature of real gecko toe and the other is Type B toe with a constant semi-circle cross section. The bending behaviors of the bionic toes subjected to a range of hydraulic pressure are also experimentally studied. It demonstrated that both toes can perform similarly large bending angles for the adduction (attachment) and abduction (detachment) motions. In comparisons, Type B toe exhibits larger output force, which is ascribed to the fact that at proximal section of Type B corresponds to larger volume for bearing fluid. Both toes can not only provide sufficient adhesion but can be quickly detached with low peeling forces. Finally, different curved surfaces are used to further justify the applicability of these bionic toes. In particular, the flexible toes developed also have the advantages of low cost, lightweight, and simple control, which is desirable for wall-climbing robots.
更多
查看译文
关键词
adhesion, gecko robot, adduction, abduction, bio-inspired design, actuators and transmissions, manufacturing, soft robots
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要