Wind Sensing and Estimation Using Small Fixed-Wing Unmanned Aerial Vehicles: A Survey

JOURNAL OF AEROSPACE INFORMATION SYSTEMS(2021)

引用 22|浏览3
暂无评分
摘要
No AccessSurvey PapersWind Sensing and Estimation Using Small Fixed-Wing Unmanned Aerial Vehicles: A SurveyPengzhi Tian, Haiyang Chao, Matthew Rhudy, Jason Gross and Huixuan WuPengzhi TianUniversity of Kansas, Lawrence, Kansas 66045*Ph.D. Student, Aerospace Engineering Department; .Search for more papers by this author, Haiyang ChaoUniversity of Kansas, Lawrence, Kansas 66045†Associate Professor, Aerospace Engineering Department; .Search for more papers by this author, Matthew RhudyPennsylvania State University, Reading, Pennsylvania 19610‡Assistant Professor, Division of Engineering, Business, and Computing; .Search for more papers by this author, Jason GrossWest Virginia University, Morgantown, West Virginia 26506§Associate Professor, Department of Mechanical and Aerospace Engineering; .Search for more papers by this author and Huixuan WuUniversity of Kansas, Lawrence, Kansas 66045Assistant Professor, Aerospace Engineering Department; .Search for more papers by this authorPublished Online:31 Jan 2021https://doi.org/10.2514/1.I010885SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Beard R. W. and McLain T. W., Small Unmanned Aircraft: Theory and Practice, Princeton Univ. Press, Princeton, NJ, 2012, Chaps. 2–4. https://doi.org/10.1515/9781400840601 CrossrefGoogle Scholar[2] Nelson R. C., Flight Stability and Automatic Control, Vol. 2, WCB/McGraw–Hill, New York, 1998, Chaps. 1, 6. https://doi.org/10.1017/S0001924000065362 Google Scholar[3] Elston J., Argrow B., Stachura M., Weibel D., Lawrence D. and Pope D., “Overview of Small Fixed-Wing Unmanned Aircraft for Meteorological Sampling,” Journal of Atmospheric and Oceanic Technology, Vol. 32, No. 1, 2015, pp. 97–115. https://doi.org/10.1175/JTECH-D-13-00236.1 CrossrefGoogle Scholar[4] Abichandani P., Lobo D., Ford G., Bucci D. and Kam M., “Wind Measurement and Simulation Techniques in Multi-Rotor Small Unmanned Aerial Vehicles,” IEEE Access, Vol. 8, March 2020, pp. 54,910–54,927. https://doi.org/10.1109/ACCESS.2020.2977693 CrossrefGoogle Scholar[5] Neumann P. P. and Bartholmai M., “Real-Time Wind Estimation on a Micro Unmanned Aerial Vehicle Using Its Inertial Measurement Unit,” Sensors and Actuators A: Physical, Vol. 235, Nov. 2015, pp. 300–310. https://doi.org/10.1016/j.sna.2015.09.036 CrossrefGoogle Scholar[6] Stull R. B., An Introduction to Boundary Layer Meteorology, Vol. 13, Springer Science & Business Media, Dordrecht, The Netherlands, 1988, Chap. 1. https://doi.org/10.1007/978-94-009-3027-8 CrossrefGoogle Scholar[7] Barr N. M., Gangsaas D. and Schaeffer D. R., “Wind Models for Flight Simulator Certification of Landing and Approach Guidance and Control Systems,” Boeing Commercial Airplane CO TR FAA-RD-74-206, Seattle, WA, 1974. Google Scholar[8] Cole K. and Wickenheiser A., “Spatio-Temporal Wind Modeling for UAV Simulations,” arXiv, 2019, pp. arXiv–1905, https://arxiv.org/pdf/1905.09954.pdf. Google Scholar[9] “Turbulence,” National Weather Service, 2020, https://www.weather.gov/source/zhu/ZHU_Training_Page/turbulence_stuff/turbulence/turbulence.htm. Google Scholar[10] Rhudy M. B., “Predicting the Parameters of Stochastic Wind Models for Time-Varying Wind Estimation Techniques,” Journal of Aerospace Information Systems, Vol. 16, No. 2, 2019, pp. 71–76. https://doi.org/10.2514/1.I010652 LinkGoogle Scholar[11] Rhudy M. B., Fravolini M. L., Porcacchia M. and Napolitano M. R., “Comparison of Wind Speed Models Within a Pitot-Free Airspeed Estimation Algorithm Using Light Aviation Data,” Aerospace Science and Technology, Vol. 86, March 2019, pp. 21–29. https://doi.org/10.1016/j.ast.2018.12.028 CrossrefGoogle Scholar[12] Rhudy M. B., Gross J. N. and Gu Y., “Stochastic Wind Modeling and Estimation for Unmanned Aircraft Systems,” AIAA Aviation 2019 Forum, AIAA Paper 2019-3111, 2019. https://doi.org/10.2514/6.2019-3111 Google Scholar[13] Negra N. B., Holmstrøm O., Bak-Jensen B. and Sørensen P., “Model of a Synthetic Wind Speed Time Series Generator,” Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, Vol. 11, No. 2, 2008, pp. 193–209. https://doi.org/10.1002/we.244 Google Scholar[14] Shamshad A., Bawadi M., Hussin W. W., Majid T. and Sanusi S., “First and Second Order Markov Chain Models for Synthetic Generation of Wind Speed Time Series,” Energy, Vol. 30, No. 5, 2005, pp. 693–708. https://doi.org/10.1016/j.energy.2004.05.026 CrossrefGoogle Scholar[15] Hoblit F. M., Gust Loads on Aircraft: Concepts and Applications, AIAA Education Series, AIAA, Reston, VA, 1988, Chap. 4. https://doi.org/10.2514/4.861888 LinkGoogle Scholar[16] U.S. Military Specification, MIL-F-8785C, 1980, http://www.mechanics.iei.liu.se/edu_ug/tmme50/8785c.pdf. Google Scholar[17] U.S. Military Handbook, MIL-HDBK-1797, 1997, http://www.mechanics.iei.liu.se/edu_ug/tmme50/MIL-HDBK-1797.PDF. Google Scholar[18] Wenz A. and Johansen T. A., “Moving Horizon Estimation of Air Data Parameters for UAVs,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 3, 2020, pp. 2101–2121. https://doi.org/10.1109/TAES.2019.2946677 CrossrefGoogle Scholar[19] “Dryden Wind Turbulence Model (Continuous),” MathWorks, 2020, https://www.mathworks.com/help/aeroblks/drydenwindturbulencemodelcontinuous.html. Google Scholar[20] “Von Karman Wind Turbulence Model (Continuous),” MathWorks, 2020, https://www.mathworks.com/help/aeroblks/vonkarmanwindturbulencemodelcontinuous.html. Google Scholar[21] Oke T. R., Boundary Layer Climates, Routledge, London, 2002, Chap. 2. https://doi.org/10.4324/9780203407219 CrossrefGoogle Scholar[22] Gedeon J., “Dynamic Analysis of Dolphin-Style Thermal Cross-Country Flight: Part II,” Technical Soaring, Vol. 3, No. 3, 1973, pp. 17–34. Google Scholar[23] Touma J. S., “Dependence of the Wind Profile Power Law on Stability for Various Locations,” Journal of the Air Pollution Control Association, Vol. 27, No. 9, 1977, pp. 863–866. https://doi.org/10.1080/00022470.1977.10470503 CrossrefGoogle Scholar[24] Holmes J. D., Wind Loading of Structures, CRC Press, Boca Raton, FL, 2018, Chap. 3. https://doi.org/10.1201/b18029 CrossrefGoogle Scholar[25] Burnham D. and Hallock J., “Chicago Monostatic Acoustic Vortex Sensing System. Volume IV. Wake Vortex Decay,” Transportation Systems Center TR DOT/FAA/RD-79-103,IV, Cambridge, MA, 1982. Google Scholar[26] Larrabee T., Chao H., Rhudy M., Gu Y. and Napolitano M. R., “Wind Field Estimation in UAV Formation Flight,” 2014 American Control Conference, Inst. of Electrical and Electronics Engineers, New York, 2014, pp. 5408–5413. https://doi.org/10.1109/acc.2014.6859266 Google Scholar[27] Sarpkaya T., “New Model for Vortex Decay in the Atmosphere,” Journal of Aircraft, Vol. 37, No. 1, 2000, pp. 53–61. https://doi.org/10.2514/2.2561 LinkGoogle Scholar[28] Pahle J., Berger D., Venti M., Duggan C., Faber J. and Cardinal K., “An Initial Flight Investigation of Formation Flight for Drag Reduction on the C-17 Aircraft,” AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2012-4802, 2012. https://doi.org/10.2514/6.2012-4802 LinkGoogle Scholar[29] Oettershagen P., Achermann F., Müller B., Schneider D. and Siegwart R., “Towards Fully Environment-Aware UAVs: Real-Time Path Planning with Online 3D Wind Field Prediction in Complex Terrain,” arXiv preprint arXiv:1712.03608, 2017, https://arxiv.org/pdf/1712.03608.pdf. Google Scholar[30] Achermann F., Lawrance N. R., Ranftl R., Dosovitskiy A., Chung J. J. and Siegwart R., “Learning to Predict the Wind for Safe Aerial Vehicle Planning,” 2019 International Conference on Robotics and Automation (ICRA), Inst. of Electrical and Electronics Engineers, New York, 2019, pp. 2311–2317. https://doi.org/10.1109/icra.2019.8793547 Google Scholar[31] Watson R. M., Gross J. N., Bar-Sever Y., Bertiger W. I. and Haines B. J., “Flight Data Assessment of Tightly Coupled PPP/INS Using Real-Time Products,” IEEE Aerospace and Electronic Systems Magazine, Vol. 32, No. 8, 2017, pp. 10–21. https://doi.org/10.1109/MAES.2017.160169 CrossrefGoogle Scholar[32] Demonceaux C., Morel O. and Fofi D., “Vision Based UAV Attitude Estimation: Progress and Insights,” Journal of Intelligent & Robotic Systems, Vol. 65, Nos. 1–4, 2012, pp. 295–308. https://doi.org/10.1007/s10846-011-9588-y CrossrefGoogle Scholar[33] Gracey W., “Summary of Methods of Measuring Angle of Attack on Aircraft,” Langley Aeronautical Lab. TN 4351, 1958. Google Scholar[34] Whitmore S. A., Davis R. J. and Fife J., “In-Flight Demonstration of a Real-Time Flush Airdata Sensing System,” Journal of Aircraft, Vol. 33, No. 5, 1996, pp. 970–977. https://doi.org/10.2514/3.47043 LinkGoogle Scholar[35] Yeo D., Henderson J. and Atkins E., “An Aerodynamic Data System for Small Hovering Fixed-Wing UAS,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2009-5756, 2009. https://doi.org/10.2514/6.2009-5756 LinkGoogle Scholar[36] McDevitt T. K. and Owen F. K., “An Optical Angle of Attack Sensor,” International Congress on Instrumentation in Aerospace Simulation Facilities, Inst. of Electrical and Electronics Engineers, New York, 1989, pp. 113–124. https://doi.org/10.1109/iciasf.1989.77664 Google Scholar[37] Strader J., Harper S. and Gu Y., “Aircraft Instrumentation and Computer Vision-Aided Flight Analysis of Local Air Flow,” AIAA Flight Testing Conference, AIAA Paper 2016-3653, 2016. https://doi.org/10.2514/6.2016-3653 LinkGoogle Scholar[38] Zhu R., Liu P., Liu X., Zhang F. and Zhou Z., “A Low-Cost Flexible Hot-Film Sensor System for Flow Sensing and Its Application to Aircraft,” 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, Inst. of Electrical and Electronics Engineers, New York, 2009, pp. 527–530. https://doi.org/10.1109/memsys.2009.4805435 Google Scholar[39] Barthelmie R., Crippa P., Wang H., Smith C., Krishnamurthy R., Choukulkar A., Calhoun R., Valyou D., Marzocca P., Matthiesen D. and Brown G., “3D Wind and Turbulence Characteristics of the Atmospheric Boundary Layer,” Bulletin of the American Meteorological Society, Vol. 95, No. 5, 2014, pp. 743–756. https://doi.org/10.1175/BAMS-D-12-00111.1 CrossrefGoogle Scholar[40] Hollenbeck D., Nunez G., Christensen L. E. and Chen Y., “Wind Measurement and Estimation with Small Unmanned Aerial Systems (sUAS) Using On-Board Mini Ultrasonic Anemometers,” 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Inst. of Electrical and Electronics Engineers, New York, 2018, pp. 285–292. https://doi.org/10.1109/icuas.2018.8453418 Google Scholar[41] Wang B. H., Wang D. B., Ali Z. A., Ting Ting B. and Wang H., “An Overview of Various Kinds of Wind Effects on Unmanned Aerial Vehicle,” Measurement and Control, Vol. 52, Nos. 7–8, 2019, pp. 731–739. https://doi.org/10.1177/0020294019847688 CrossrefGoogle Scholar[42] Tian P., Chao H., Flanagan H. P., Hagerott S. G. and Gu Y., “Design and Evaluation of UAV Flow Angle Estimation Filters,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 55, No. 1, 2019, pp. 371–383. https://doi.org/10.1109/TAES.2018.2852359 CrossrefGoogle Scholar[43] Tian P. and Chao H., “Model Aided Estimation of Angle of Attack, Sideslip Angle, and 3D Wind Without Flow Angle Measurements,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2018-1844, 2018. https://doi.org/10.2514/6.2018-1844 Google Scholar[44] McClelland H. G. and Woolsey C. A., “Effects of Two Modeling Assumptions on Wind Reconstruction from Longitudinal Aircraft Motion,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 6, 2020, pp. 1069–1081. https://doi.org/10.2514/1.G004224 LinkGoogle Scholar[45] Etele J. and Fusina G., “Overview of Wind Gust Modelling with Application to Autonomous Low-Level UAV Control,” TR DRDC-OTTAWA-CR-2006-221, Defence R&D Canada, 2006. Google Scholar[46] Tian P., He A., Chao H., Zheng Z. C. and Gu Y., “Wake Encounter Simulation and Flight Validation with UAV Close Formation Flight,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2017-1910, 2017. https://doi.org/10.2514/6.2017-1910 LinkGoogle Scholar[47] Fischenberg D., “A Method to Validate Wake Vortex Encounter Models from Flight Test Data,” 27th International Congress of the Aeronautical Sciences, ICAS Paper 2010-6.9.1, 2010, pp. 1–11. Google Scholar[48] Balmer G., Muskardin T., Wlach S. and Kondak K., “Enhancing Model-Free Wind Estimation for Fixed-Wing UAV,” 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Inst. of Electrical and Electronics Engineers, New York, 2018, pp. 1242–1247. https://doi.org/10.1109/icuas.2018.8453419 Google Scholar[49] Van den Kroonenberg A., Martin T., Buschmann M., Bange J. and Vörsmann P., “M2AV Measuring the Wind Vector Using the Autonomous Mini Aerial Vehicle,” Journal of Atmospheric and Oceanic Technology, Vol. 25, No. 11, 2008, pp. 1969–1982. https://doi.org/10.1175/2008JTECHA1114.1 CrossrefGoogle Scholar[50] Rautenberg A., Graf M. S., Wildmann N., Platis A. and Bange J., “Reviewing Wind Measurement Approaches for Fixed-Wing Unmanned Aircraft,” Atmosphere, Vol. 9, No. 11, 2018, p. 422. https://doi.org/10.3390/atmos9110422 CrossrefGoogle Scholar[51] Niedzielski T., Skjøth C., Werner M., Spallek W., Witek M., Sawiński T., Drzeniecka-Osiadacz A., Korzystka-Muskała M., Muskała P., Modzel P. and Guzikowski J., “Are Estimates of Wind Characteristics Based on Measurements with Pitot Tubes and GNSS Receivers Mounted on Consumer-Grade Unmanned Aerial Vehicles Applicable in Meteorological Studies?” Environmental Monitoring and Assessment, Vol. 189, No. 9, 2017, p. 431. https://doi.org/10.1007/s10661-017-6141-x CrossrefGoogle Scholar[52] Langelaan J. W., Alley N. and Neidhoefer J., “Wind Field Estimation for Small Unmanned Aerial Vehicles,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 4, 2011, pp. 1016–1030. https://doi.org/10.2514/1.52532 LinkGoogle Scholar[53] Reineman B. D., Lenain L. and Melville W. K., “The Use of Ship-Launched Fixed-Wing UAVs for Measuring the Marine Atmospheric Boundary Layer and Ocean Surface Processes,” Journal of Atmospheric and Oceanic Technology, Vol. 33, No. 9, 2016, pp. 2029–2052. https://doi.org/10.1175/JTECH-D-15-0019.1 CrossrefGoogle Scholar[54] Mohamed A., Abdulrahim M., Watkins S. and Clothier R., “Development and Flight Testing of a Turbulence Mitigation System for Micro Air Vehicles,” Journal of Field Robotics, Vol. 33, No. 5, 2016, pp. 639–660. https://doi.org/10.1002/rob.21626 CrossrefGoogle Scholar[55] Reuder J. and Jonassen M. O., “First Results of Turbulence Measurements in a Wind Park with the Small Unmanned Meteorological Observer SUMO,” Energy Procedia, Vol. 24, Jan. 2012, pp. 176–185. https://doi.org/10.1016/j.egypro.2012.06.099 CrossrefGoogle Scholar[56] Lie F. A. P. and Gebre-Egziabher D., “Synthetic Air Data System,” Journal of Aircraft, Vol. 50, No. 4, 2013, pp. 1234–1249. https://doi.org/10.2514/1.C032177 LinkGoogle Scholar[57] Cho A., Kim J., Lee S. and Kee C., “Wind Estimation and Airspeed Calibration Using a UAV with a Single-Antenna GPS Receiver and Pitot Tube,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 1, 2011, pp. 109–117. https://doi.org/10.1109/TAES.2011.5705663 CrossrefGoogle Scholar[58] Johansen T. A., Cristofaro A., Sørensen K., Hansen J. M. and Fossen T. I., “On Estimation of Wind Velocity, Angle-of-Attack and Sideslip Angle of Small UAVs Using Standard Sensors,” 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Inst. of Electrical and Electronics Engineers, New York, 2015, pp. 510–519. https://doi.org/10.1109/icuas.2015.7152330 Google Scholar[59] Brossard M., Condomines J.-P. and Bonnabel S., “Tightly Coupled Navigation and Wind Estimation for Mini UAVs,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2018-1843, 2018. https://doi.org/10.2514/6.2018-1843 Google Scholar[60] Cho A., Kang Y.-S., Park B.-J. and Yoo C.-S., “Airflow Angle and Wind Estimation Using GPS/INS Navigation Data and Airspeed,” 2013 13th International Conference on Control, Automation and Systems (ICCAS), Inst. of Electrical and Electronics Engineers, New York, 2013, pp. 1321–1324. https://doi.org/10.1109/iccas.2013.6704159 Google Scholar[61] Wenz A., Johansen T. A. and Cristofaro A., “Combining Model-Free and Model-Based Angle of Attack Estimation for Small Fixed-Wing UAVs Using a Standard Sensor Suite,” International Conference on Unmanned Aircraft Systems, Inst. of Electrical and Electronics Engineers, New York, 2016, pp. 624–632. https://doi.org/10.1109/icuas.2016.7502583 Google Scholar[62] Ryu H. and Park S., “Vision-Based Wind and Position Estimation with Fixed-Wing Unmanned Aerial Vehicle,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 10, 2018, pp. 2283–2292. https://doi.org/10.2514/1.G003646 LinkGoogle Scholar[63] Guilliard I., Rogahn R., Piavis J. and Kolobov A., “Autonomous Thermalling as a Partially Observable Markov Decision Process (Extended Version),” arXiv preprint arXiv:1805.09875, 2018, https://arxiv.org/pdf/1805.09875.pdf. Google Scholar[64] Rhudy M. B., Gu Y., Gross J. N. and Chao H., “Onboard Wind Velocity Estimation Comparison for Unmanned Aircraft Systems,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 1, 2017, pp. 55–66. https://doi.org/10.1109/TAES.2017.2649218 CrossrefGoogle Scholar[65] Rhudy M. B., Larrabee T., Chao H., Gu Y. and Napolitano M., “UAV Attitude, Heading, and Wind Estimation Using GPS/INS and an Air Data System,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2013-5201, 2013. https://doi.org/10.2514/6.2013-5201 LinkGoogle Scholar[66] Youn W., Choi H. S., Ryu H., Kim S. and Rhudy M. B., “Model-Aided State Estimation of HALE UAV with Synthetic AOA/SSA for Analytical Redundancy,” IEEE Sensors Journal, Vol. 20, No. 14, 2020, pp. 7929–7940. https://doi.org/10.1109/JSEN.2020.2981042 CrossrefGoogle Scholar[67] Rhudy M. B., Gu Y. and Chao H., “Wind Field Velocity and Acceleration Estimation Using a Small UAV,” AIAA Modeling and Simulation Technologies Conference, AIAA Paper 2014-2647, 2014. https://doi.org/10.2514/6.2014-2647 LinkGoogle Scholar[68] Notter S., Schrapel P., Groß P. and Fichter W., “Estimation of Multiple Thermal Updrafts Using a Particle Filter Approach,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2018-1854, 2018. https://doi.org/10.2514/6.2018-1854 Google Scholar[69] Mayer S., Hattenberger G., Brisset P., Jonassen M. O. and Reuder J., “A ‘No-Flow-Sensor’ Wind Estimation Algorithm for Unmanned Aerial Systems,” International Journal of Micro Air Vehicles, Vol. 4, No. 1, 2012, pp. 15–29. https://doi.org/10.1260/1756-8293.4.1.15 CrossrefGoogle Scholar[70] Park S., “Autonomous Crabbing by Estimating Wind Using Only GPS Velocity,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, No. 3, 2016, pp. 1399–1407. https://doi.org/10.1109/TAES.2016.140491 CrossrefGoogle Scholar[71] Hong H., Wang M., Holzapfel F. and Tang S., “Fast Real-Time Three-Dimensional Wind Estimation for Fixed-Wing Aircraft,” Aerospace Science and Technology, Vol. 69, Oct. 2017, pp. 674–685. https://doi.org/10.1016/j.ast.2017.07.019 CrossrefGoogle Scholar[72] Borup K. T., Fossen T. I. and Johansen T. A., “A Machine Learning Approach for Estimating Air Data Parameters of Small Fixed-Wing UAVs Using Distributed Pressure Sensors,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 3, 2020, pp. 2157–2173. https://doi.org/10.1109/TAES.2019.2945383 CrossrefGoogle Scholar[73] Allison S., Bai H. and Jayaraman B., “Wind Estimation Using Quadcopter Motion: A Machine Learning Approach,” Aerospace Science and Technology, Vol. 98, March 2020, Paper 105699. https://doi.org/10.1016/j.ast.2020.105699 CrossrefGoogle Scholar[74] Sun K., Regan C. D. and Egziabher D. G., “GNSS/INS Based Estimation of Air Data and Wind Vector Using Flight Maneuvers,” 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Inst. of Electrical and Electronics Engineers, New York, 2018, pp. 838–849. https://doi.org/10.1109/plans.2018.8373461 Google Scholar[75] Sun K., Regan C. D. and Gebre-Egziabher D., “Observability and Performance Analysis of a Model-Free Synthetic Air Data Estimator,” Journal of Aircraft, Vol. 56, No. 4, 2019, pp. 1471–1486. https://doi.org/10.2514/1.C035290 LinkGoogle Scholar[76] Bishop G. and Welch G., “An Introduction to the Kalman Filter,” Proceedings of SIGGRAPH, Vol. 8, 2001, pp. 27599-23175. Google Scholar[77] “Using the ECL EKF,” PX4, 2020. https://docs.px4.io/v1.9.0/en/advanced_config/tuning_the_ecl_ekf.html. Google Scholar[78] Chao H., Gu Y., Tian P., Zheng Z. C. and Napolitano M. R., “Wake Vortex Detection with UAV Close Formation Flight,” AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2015-2396, 2015. https://doi.org/10.2514/6.2015-2396 LinkGoogle Scholar[79] Jategaonkar R., Flight Vehicle System Identification: A Time Domain Methodology, Vol. 216, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2006, Chap. 10. https://doi.org/10.2514/4.866852 LinkGoogle Scholar[80] Rodriguez L., Cobano J. A. and Ollero A., “Wind Field Estimation and Identification Having Shear Wind and Discrete Gusts Features with a Small UAS,” 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Inst. of Electrical and Electronics Engineers, New York, 2016, pp. 5638–5644. https://doi.org/10.1109/iros.2016.7759829 Google Scholar[81] Langelaan J. W., Spletzer J., Montella C. and Grenestedt J., “Wind Field Estimation for Autonomous Dynamic Soaring,” 2012 IEEE International Conference on Robotics and Automation, Inst. of Electrical and Electronics Engineers, New York, 2012, pp. 16–22. https://doi.org/10.1109/icra.2012.6224954 Google Scholar[82] Tian P., Chao H. and Wu H., “UAS-Based Wind Estimation Using Sinusoidal Gust Model,” AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2019-1597, 2019. https://doi.org/10.2514/6.2019-1597 Google Scholar[83] Cornman L. B., Airborne In Situ Measurements of Turbulence, Springer International Publishing, Cham, Switzerland, 2016, pp. 97–120. https://doi.org/10.1007/978-3-319-23630-8_5 CrossrefGoogle Scholar Previous article FiguresReferencesRelatedDetailsCited byGuidance and Control for Steady Deep Stall Landing of Aircraft with Wing Articulation and Lifting Surfaces in Propeller FlowAditya A. Paranjape19 January 2023Wind Estimation using an H∞ Filter with Fixed-Wing Aircraft Flight Test ResultsKenneth Gahan, Jeremy W. Hopwood and Craig A. Woolsey19 January 2023Quantitative Conflict Detection in an Airspace of Heterogeneous Unmanned Aerial Vehicles Subject to Wind UncertaintiesRajnish Bhusal, Aakarshan Khanal, Kamesh Subbarao, Animesh Chakravarthy and Wendy Okolo19 January 2023Synthetic Air Data Sensing Applied to Phoenix and InSight Entry Atmosphere ReconstructionChristopher D. Karlgaard1 July 2022 | Journal of Spacecraft and Rockets, Vol. 59, No. 4Invariant-EKF design for quadcopter wind estimationBioinspired dynamic soaring simulation system with distributed pressure sensors25 April 2022 | Bioinspiration & Biomimetics, Vol. 17, No. 3Model-Free Integrated Navigation of Small Fixed-Wing UAVs Full State Estimation in Wind DisturbanceIEEE Sensors Journal, Vol. 22, No. 3Wind and Airflow Angle Estimation Using an Adaptive Extended Rauch-Tung-Striebel SmootherXiang Fang, Coen C. de Visser, Daan M. Pool and Florian Holzapfel29 December 2021Estimation of Airspeed, Angle of Attack, and Sideslip for Small Unmanned Aerial Vehicles (UAVs) Using a Micro-Pitot Tube22 September 2021 | Electronics, Vol. 10, No. 19Experimental Analysis of Neural Approaches for Synthetic Angle-of-Attack EstimationInternational Journal of Aerospace Engineering, Vol. 20212D Closed-Form Solution for the Measurement of the Angle of Attack and Sideslip Angle What's Popular Volume 18, Number 3March 2021 Metrics CrossmarkInformationCopyright © 2021 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 2327-3097 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsAirspeedAviationAviation MeteorologyAviation SafetyAviation Weather HazardsAvionicsFlight TestGuidance, Navigation, and Control SystemsSensorsTransducersTurbulenceTurbulence Models KeywordsUnscented Kalman FilterVortex FilamentsPower Spectral DensityGPSAngle of AttackPitot TubesIMUControl DerivativesAirspeedVortex Lattice MethodAcknowledgmentsThis work was partially supported by the University of Kansas General Research Fund allocation #2221800 and United States Department of Agriculture–National Institute of Food and Agriculture Grant 2019-67021-28992.PDF Received1 August 2020Accepted26 December 2020Published online31 January 2021
更多
查看译文
关键词
wind,fixed-wing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要