S*Relu: Learning Piecewise Linear Activation Functions Via Particle Swarm Optimization

VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP(2021)

引用 1|浏览4
暂无评分
摘要
Recently, it was shown that using a properly parametrized Leaky ReLU (LReLU) as activation function yields significantly better results for a variety of image classification tasks. However, such methods are not feasible in practice. Either the only parameter (i.e., the slope of the negative part) needs to be set manually (L*ReLU), or the approach is vulnerable due to the gradient-based optimization and, thus, highly dependent on a proper initialization (PReLU). In this paper, we exploit the benefits of piecewise linear functions, avoiding these problems. To this end, we propose a fully automatic approach to estimate the slope parameter for LReLU from the data. We realize this via Stochastic Optimization, namely Particle Swarm Optimization (PSO): S*ReLU. In this way, we can show that, compared to widely-used activation functions (including PReLU), we can obtain better results on seven different benchmark datasets, however, also drastically reducing the computational effort.
更多
查看译文
关键词
Visual Categorization, Activation Functions, Particle Swarm Optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要