Mechanical Stretch Promotes Antioxidant Responses And Cardiomyogenic Differentiation In P19 Cells

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE(2021)

引用 1|浏览4
暂无评分
摘要
Accumulating evidence has suggested that mechanical stimuli play a crucial role in regulating the lineage-specific differentiation of stem cells through fine-tuning redox balance. We aimed to investigate the effects of cyclic tensile strain (CTS) on the expression of antioxidant enzymes and cardiac-specific genes in P19 cells, a widely characterized tool for cardiac differentiation research. A stretching device was applied to generate different magnitude and duration of cyclic strains on P19 cells. The messenger RNA and protein levels of targeted genes were determined by real-time polymerase chain reaction and Western blot assays, respectively. Proper magnitude and duration of cognitive stimulation therapy (CST) stimulation substantially enhanced the expression of both antioxidant enzymes and cardiac-specific genes in P19 cells. Sirtuin 1 (SIRT1) played an essential role in the CTS-induced cardiomyogenic differentiation of P19, as evidenced by changes in the expression of antioxidant enzymes and cardiac-specific genes. Mechanical loading promoted the cardiomyogenic differentiation of P19 cells. SIRT1 was involved in CST-mediated P19 differentiation, implying that SIRT1 might serve as an important target for developing methods to promote cardiomyogenic differentiation of stem cells.
更多
查看译文
关键词
cardiomyocytes, cyclic tensile strain, P19 cells, reactive oxygen species, sirtuin 1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要