Boosting Gwas Using Biological Networks: A Study On Susceptibility To Familial Breast Cancer

PLOS COMPUTATIONAL BIOLOGY(2021)

引用 3|浏览20
暂无评分
摘要
Genome-wide association studies (GWAS) explore the genetic causes of complex diseases. However, classical approaches ignore the biological context of the genetic variants and genes under study. To address this shortcoming, one can use biological networks, which model functional relationships, to search for functionally related susceptibility loci. Many such network methods exist, each arising from different mathematical frameworks, pre-processing steps, and assumptions about the network properties of the susceptibility mechanism. Unsurprisingly, this results in disparate solutions. To explore how to exploit these heterogeneous approaches, we selected six network methods and applied them to GENESIS, a nationwide French study on familial breast cancer. First, we verified that network methods recovered more interpretable results than a standard GWAS. We addressed the heterogeneity of their solutions by studying their overlap, computing what we called the consensus. The key gene in this consensus solution was COPS5, a gene related to multiple cancer hallmarks. Another issue we observed was that network methods were unstable, selecting very different genes on different subsamples of GENESIS. Therefore, we proposed a stable consensus solution formed by the 68 genes most consistently selected across multiple subsamples. This solution was also enriched in genes known to be associated with breast cancer susceptibility (BLM, CASP8, CASP10, DNAJC1, FGFR2, MRPS30, and SLC4A7, P-value = 3 x 10(-4)). The most connected gene was CUL3, a regulator of several genes linked to cancer progression. Lastly, we evaluated the biases of each method and the impact of their parameters on the outcome. In general, network methods preferred highly connected genes, even after random rewirings that stripped the connections of any biological meaning. In conclusion, we present the advantages of network-guided GWAS, characterize their shortcomings, and provide strategies to address them. To compute the consensus networks, implementations of all six methods are available at .Author summaryGenome-wide association studies (GWAS) scan thousands of genomes to identify variants associated with a complex trait. Over the last 15 years, GWAS have advanced our understanding of the genetics of complex diseases, and in particular of cancers. However, they have led to an apparent paradox: the more we perform such studies, the more it seems that the entire genome is involved in every disease. The omnigenic model offers an appealing explanation: only a limited number of core genes are directly involved in the disease, but gene functions are deeply interrelated, and so many other genes can alter the function of the core genes. These interrelations are often modeled as networks, and multiple algorithms have been proposed to use these networks to identify the subset of core genes involved in a specific trait. This study applies and compares six such network methods on GENESIS, a GWAS dataset for familial breast cancer in the French population. Combining these approaches allows us to identify potentially novel breast cancer susceptibility genes and provides a mechanistic explanation for their role in the development of the disease. We provide ready-to-use implementations of all the examined methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要