Design of a Quasi Direct drive Actuator for Dynamic Motions

user-5d4bc4a8530c70a9b361c870(2020)

引用 7|浏览29
暂无评分
摘要
In recent years, several legged/wheeled robots have been developed, and their effective functionality in locomotion on uneven terrains has been proved. Many robotics researchers have been focusing on improving the locomotion speed as well as the stability and robustness of such robots. High-speed locomotion of robots is, however, subject to various design challenges, especially in the development of actuators. The robotic applications that require high-speed motion in high-torque operations along with the ability to manage dynamic physical interactions are not satisfied by the conventional robotic actuators deploying high-reduction gearings. In this work, we present a quasi-direct-drive actuator designed for continuous high-speed motions in high torque, such as wheeled motions in mobile robots or joint motions in dynamic-legged robots. The presented actuator exploits low-reduction gearing so that it can render over 26 Nm of continuous torque, while the actuator speed can exceed 37 rad/s. Such characteristics enable the exhibition of dynamic motions and can deal with large external impacts. The selection of the motor and design of the gearing unit was carried out iteratively so that commercial items with minimum customization could be employed and the outer diameters of the motor and the gearbox could match. A single-level planetary gearbox was devised for the reduction unit to ensure high back-drivability and transparency of the actuator, thereby making the actuator robust against external impacts and allowing for accurate torque control using motor current measurement. The gear set design was carried out based on the AGMA gear torque calculation. Given the radial space required for the gearbox to deal with the torque requirements, the actuator motor was chosen to be small in height (pancake type), which ensures high torque density within smaller dimensions at high-speed operation. The mechanical design of the actuator is presented in this paper, and the actuator’s specifications in terms of size and performance are compared with those of similar state-of-the-art actuators.
更多
查看译文
关键词
Actuator,Mobile robot,Torque,Robotics,Robot,Robustness (computer science),Control theory,Transmission (mechanics),Computer science,Artificial intelligence,High torque
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要