Anti-thrombotic effects mediated by dihydromyricetin involve both platelet inhibition and endothelial protection.

Pharmacological research(2021)

引用 18|浏览5
暂无评分
摘要
Classical antithrombotics and antiplatelets are associated with high frequencies of bleeding complications or treatment failure when used as single agents. The platelet-independent fibrin generation by activated endothelium highlights the importance of vascular protection in addition to platelet inhibition in thrombosis prevention. Dihydromyricetin (DHM), the most abundant flavonoid in Ampelopsis grossedentata, has unique vasoprotective effects. This study aims to characterize the antithrombotic potential of DHM. The effects of DHM on the activation of platelets and endothelial cells were evaluated in vitro. Calcium mobilization and activation of mitogen-activated protein kinases (MAPKs) were examined as the potential targets of DHM based on molecular docking analysis. The in vivo effects of DHM were determined in FeCl3-injured carotid arteries and laser-injured cremasteric arterioles. The results showed that DHM suppressed a range of platelet responses including aggregation, secretion, adhesion, spreading and integrin activation, and inhibited exocytosis, phosphatidylserine exposure and tissue factor expression in activated endothelial cells. Mechanistically, DHM attenuated thrombin-induced calcium mobilization and phosphorylation of ERK1/2 and p38 both in platelets and endothelial cells. Intravenous treatment with DHM delayed FeCl3-induced carotid arterial thrombosis. Furthermore, DHM treatment inhibited both platelet accumulation and fibrin generation in the presence or absence of eptifibatide in the laser injury-induced thrombosis model, without prolonging ex vivo plasma coagulation or tail bleeding time. DHM represents a novel antithrombotic agent whose effects involve both inhibition of platelet activation and reduction of fibrin generation as a result of endothelial protection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要