Improving glomerular filtration rate estimation by semi-supervised learning: a development and external validation study

INTERNATIONAL UROLOGY AND NEPHROLOGY(2021)

引用 1|浏览7
暂无评分
摘要
Background Accurate estimating glomerular filtration rate (GFR) is crucial both in clinical practice and epidemiological survey. We incorporated semi-supervised learning technology to improve GFR estimation performance. Methods AASK [African American Study of Kidney Disease and Hypertension], CRIC [Chronic Renal Insufficiency Cohort] and DCCT [Diabetes Control and Complications Trial] studies were pooled together for model development, whereas MDRD [Modification of Diet in Renal Disease] and CRISP [Consortium for Radiological Imaging Studies of Polycystic Kidney Disease] studies for model external validation. A total of seven variables (Serum creatinine, Age, Sex, Black race, Diabetes status, Hypertension and Body Mass Index) were included as independent variables, while the outcome variable GFR was measured as the urinary clearance of 125 I-iothalamate. The revised CKD-EPI [Chronic Kidney Disease Epidemiology Collaboration] creatinine equations was selected as benchmark for performance comparisons. Head-to-head performance comparisons from four-variable to seven-variable combination were conducted between revised CKD-EPI equations and semi-supervised models. Results In each independent variables combination, the semi-supervised models consistently achieved superior results in all three performance indicators compared with corresponding revised CKD-EPI equations in the external validation data set. Furthermore, compared with revised four-variable CKD-EPI equation, the seven-variable semi-supervised model performed less biased (mean of difference: 0.03 [− 0.28, 0.34] vs 1.53 [1.28, 1.85], P < 0.001), more precise (interquartile range of difference: 7.94 [7.37, 8.50] vs 8.28 [7.76, 8.83], P = 0.1) and accurate (P30: 88.9% [87.4%, 90.2%] vs 86.0% [84.4%, 87.4%], P < 0.001. Conclusions The superior performance of the semi-supervised models during head-to-head comparisons supported the hypothesis that semi-supervised learning technology could improve GFR estimation performance.
更多
查看译文
关键词
Chronic kidney disease (CKD), Glomerular filtration rate (GFR), Serum creatinine, Estimating equation, Semi-supervised learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要