基因芯片技术在结核分枝杆菌耐药检测及菌种鉴定中的应用

Chinese Journal of Antituberculosis(2015)

引用 0|浏览1
暂无评分
摘要
目的 应用基因芯片技术快速检测结核分枝杆菌的耐药基因型以及分枝杆菌菌种基因型,探讨基因芯片技术检测结核分枝杆菌耐药性和基因型的临床价值.方法 应用菌种分型基因芯片技术和间隔区寡核苷酸分型(spacer oligonucleotide typing,Spoligotyping)技术对长沙市中心医院2011年1月至2012年12月的临床标本分离菌株137株进行菌种鉴定.对鉴定为结核分枝杆菌的菌株应用绝对浓度法进行利福平和异烟肼药物敏感性检测.并进一步对结核分枝杆菌临床分离株(利福平耐药、异烟肼耐药、敏感株)应用耐药基因芯片技术对rpoB、katG、inhA基因的野生型位点及各突变位点进行检测.即rpoB基因中1个或多个位点的碱基突变为利福平耐药,katG、inhA基因任何基因中的1个或多个位点的碱基突变为异烟肼耐药.Spoligotyping法和基因芯片法菌种鉴定比较应用Kappa检验,绝对浓度法和基因芯片法药物敏感性比较采用x2检验和Kappa检验,均以P<0.05为差异有统计学意义.结果 (1)与绝对浓度法比较,对利福平敏感和异烟肼敏感的菌株45株,耐药基因芯片法检测鉴定为敏感株、即野生型的rpoB基因42株,符合率为93.3%(42/45)(不符合的1株为511T-C突变,1株为531C-T突变,1株为516A-T突变);katG基因45株,符合率为100.0% (45/45);inhA基因43株,符合率为95.6%(43/45)(不符合的2株为inhA-15C-T突变).(2)与绝对浓度法比较,对利福平轻度耐药的耐药菌株18株,耐药基因芯片检测鉴定为rpoB基因突变型的16株,符合率为88.9%(16/18),且与531、516、526、511位点突变相关.对利福平高度耐药的耐药菌株19株,耐药基因芯片检测全部鉴定为rpoB基因突变型,符合率为100.0%(19/19),且与531、516、526、511位点突变相关.(3)与绝对浓度法比较,对异烟肼轻度耐药的耐药菌株13株,耐药基因芯片检测鉴定为katG基因突变型的12株,符合率为92.3%(12/13),与315G-C和315G-A位点突变相关.inhA基因突变型0株.对异烟肼高度耐药的耐药菌株9株,耐药基因芯片检测鉴定为katG基因全部为突变型,符合率为100.0%(9/9),与315G-C和315G-A位点突变相关.inhA基因突变型0株.(4)与Spoligotyping法比较,137株临床分离株中104株分离株基因芯片法检测鉴定为结核分枝杆菌复合群,33株基因芯片法检测出7株鸟分枝杆菌、15株胞内分枝杆菌、1株偶然分枝杆菌、10株龟或脓肿分枝杆菌,与Spoligotyping法比较,结核分枝杆菌复合群一致性为100.0%(104/104),鸟分枝杆菌一致性为77.8%(7/9),胞内分枝杆菌一致性为93.8%(15/16),偶然分枝杆菌一致性为0.0%(0/0),龟或脓肿分枝杆菌一致性为100.0%(8/8).经Kappa检验,Kappa=0.95,U=30.6,P<0.05.结论 耐药基因芯片检测法与绝对浓度法有高度的一致性,且利福平耐药与rpoB基因的531、516、526、511位点突变相关.异烟肼耐药与katG基因的315位点突变相关,没有发现inhA相关的耐药位点突变.基因芯片方法可快速、准确地检测临床分离株的菌种基因型和耐药性.
更多
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要