Controlled Gaussian process dynamical models with application to robotic cloth manipulation

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
Over the last years, significant advances have been made in robotic manipulation, but still, the handling of non-rigid objects, such as cloth garments, is an open problem. Physical interaction with non-rigid objects is uncertain and complex to model. Thus, extracting useful information from sample data can considerably improve modeling performance. However, the training of such models is a challenging task due to the high-dimensionality of the state representation. In this paper, we propose Controlled Gaussian Process Dynamical Models (CGPDMs) for learning high-dimensional, nonlinear dynamics by embedding them in a low-dimensional manifold. A CGPDM is constituted by a low-dimensional latent space, with an associated dynamics where external control variables can act and a mapping to the observation space. The parameters of both maps are marginalized out by considering Gaussian Process priors. Hence, a CGPDM projects a high-dimensional state space into a smaller dimension latent space, in which it is feasible to learn the system dynamics from training data. The modeling capacity of CGPDM has been tested in both a simulated and a real scenario, where it proved to be capable of generalizing over a wide range of movements and confidently predicting the cloth motions obtained by previously unseen sequences of control actions.
更多
查看译文
关键词
gaussian process dynamical models,cloth,robotic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要