Polyphosphate Reverses The Toxicity Of The Quasi-Enzyme Bleomycin On Alveolar Endothelial Lung Cells In Vitro

CANCERS(2021)

引用 10|浏览14
暂无评分
摘要
Simple Summary: Bleomycin (BLM) is a medication introduced used to treat various types of cancer, including testicular cancer, ovarian cancer, and Hodgkin's disease. Its most serious side effect is pulmonary fibrosis and impaired lung function. Using A549 human lung cells it is shown that, in parallel to an increased cell toxicity and DNA damage, BLM causes a marked enlargement of the cell nucleus. This effect is abolished by inorganic polyphosphate (polyP), if this physiological polymer is administered together with BLM. The detoxification of BLM is-most likely-caused by the upregulation of the gene encoding the BLM hydrolase which inactivates BLM in vitro and in vivo. This study contributes also to a rational application in COVID-19 patients since polyP prevents binding of SARS-CoV-2 to host cells.Abstract: The anti-cancer antitumor antibiotic bleomycin(s) (BLM) induces athyminic sites in DNA after its activation, a process that results in strand splitting. Here, using A549 human lung cells or BEAS-2B cells lunc cells, we show that the cell toxicity of BLM can be suppressed by addition of inorganic polyphosphate (polyP), a physiological polymer that accumulates and is released from platelets. BLM at a concentration of 20 mu g ml(-1) causes a decrease in cell viability (by similar to 70%), accompanied by an increased DNA damage and chromatin expansion (by amazingly 6-fold). Importantly, the BLM-caused effects on cell growth and DNA integrity are substantially suppressed by polyP. In parallel, the enlargement of the nuclei/chromatin in BLM-treated cells (diameter, 20-25 mu m) is normalized to similar to 12 mu m after co-incubation of the cells with BLM and polyP. A sequential application of the drugs (BLM for 3 days, followed by an exposure to polyP) does not cause this normalization. During co-incubation of BLM with polyP the gene for the BLM hydrolase is upregulated. It is concluded that by upregulating this enzyme polyP prevents the toxic side effects of BLM. These data might also contribute to an application of BLM in COVID-19 patients, since polyP inhibits binding of SARS-CoV-2 to cellular ACE2.
更多
查看译文
关键词
bleomycin, polyphosphate, pulmonary fibrosis, prevention of fibrosis, COVID-19, anti-SARS-CoV-2 activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要