A high-performance voltammetric methodology for the ultra-sensitive detection of riboflavin in food matrices based on graphene oxide-covered hollow MnO2 spheres.

Food chemistry(2021)

引用 17|浏览12
暂无评分
摘要
A high-performance voltammetric methodology was developed to achieve ultra-sensitive detection of riboflavin, employing an electrode modified by graphene oxide-covered hollow MnO2 spheres nanocomposite with high catalytic activity, large surface area, and hierarchical layered structure. Under the optimal conditions, the current responses of the oxidation peak located at -0.39 V showed a good linear relationship versus the concentration of riboflavin in the range of 1.0 nM-4.0 μM in acetate buffer (pH 5.4). The limit of detection was determined as 0.26 nM. Moreover, the proposed electrode exhibited high reproducibility (relative standard deviation of 1.7%, n = 10) and excellent stability (97.6% sensitivity within two months), which has been successfully applied to the quantification of riboflavin in complicated food matrices, with results in good accordance with those obtained by chromatography as a reference method, indicating it is an effective sensing platform for ultra-sensitive determination of riboflavin in practical applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要