The Age Of Westerland 1 Revisited

ASTROPHYSICAL JOURNAL(2021)

引用 17|浏览11
暂无评分
摘要
The cluster Westerlund 1 (Wd1) is host to a large variety of post-main-sequence (MS) massive stars. The simultaneous presence of these stars can only be explained by stellar models if the cluster has a finely tuned age of 4-5 Myr, with several published studies independently claiming ages within this range. At this age, stellar models predict that the cool supergiants (CSGs) should have luminosities of log(L/L-circle dot) approximate to 5.5, close to the empirical luminosity limit. Here, we test that prediction using archival data and new photometry from Stratospheric Observatory for Infrared Astronomy to estimate bolometric luminosities for the CSGs. We find that these stars are on average 0.4 dex too faint to be 5 Myr old, regardless of which stellar evolutionary model is used, and instead are indicative of a much older age of 10.4(-1.2)(+1.3) Myr. We argue that neither systematic uncertainties in the extinction law nor stellar variability can explain this discrepancy. In reviewing various independent age estimates of Wd1 in the literature, we first show that those based on stellar diversity are unreliable. Second, we reanalyze Wd1's pre-MS stars employing the Damineli extinction law, finding an age of 7.2(-2.3)(+1.1) Myr; older than that of previous studies, but which is vulnerable to systematic errors that could push the age close to 10 Myr. However, there remains significant tension between the CSG age and that inferred from the eclipsing binary W13. We conclude that stellar evolutionary models cannot explain Wd1 under the single-age paradigm. Instead, we propose that the stars in the Wd1 region formed over a period of several megayears.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要