Chiral Analysis Of Lactate During Direct Contact Coculture By Single-Cell On-Probe Enzymatic Dehydrogenation Derivatization: Unraveling Metabolic Changes Caused By D-Lactate

ANALYTICAL CHEMISTRY(2021)

引用 11|浏览6
暂无评分
摘要
In vitro noncontact cell-based coculture models are frequently employed to study cell-to-cell communication. However, these models cannot accurately represent the complexity of in vivo signaling. DLactate is an unusual metabolite produced and released by cancer cells. The characterization of D-lactate is challenging as it shares the same mass but has much lower amounts compared with L-lactate. Herein, D-alpha-hydroxy acids were specifically recognized and dehydrogenated by D-alpha-hydroxy acid dehydrogenase. The dehydrogenation products were rapidly quaternized for enhancement of mass signals. An on-probe enzymatic dehydrogenation-derivatization method was proposed for chiral analysis of alpha-hydroxy acids at the single-cell level. It is a promising amplification methodology and affords over 3 orders of magnitude signal enhancement. Furthermore, direct contact coculture models were used to precisely mimic the tumor microenvironment and explore the communication between cancer and normal cells. Single-cell mass spectrometry (SCMS) was further applied to easily sample cell extracts and study the differences of the aspects of small molecule metabolism in cocultured cells. On the basis of direct contact coculture SCMS, several differential small molecule metabolites and differences of oxidative stress between cocultured and monocultured normal cells were successfully detected. Additionally, D-lactate was discovered as a valuable differential metabolite with application of the two developed methods. It may account for the cancer-associated metabolic behavior of normal cells. These changes could be relieved after D-lactate metabolism-related drug treatment. This discovery may promote the investigation of D-lactate metabolism, which may provide a novel direction for cancer therapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要