Improved Sodiation Additive And Its Nuances In The Performance Enhancement Of Sodium-Ion Batteries

ACS APPLIED MATERIALS & INTERFACES(2021)

引用 18|浏览12
暂无评分
摘要
The abundance of the available sodium sources has led to rapid progress in sodium-ion batteries (SIBs), making them potential candidates for immediate replacement of lithium-ion batteries (LIBs). However, commercialization of SIBs has been hampered by their fading efficiency due to the sodium consumed in the formation of solid-electrolyte interphase (SEI) when using hard carbon (HC) anodes. Herein, Na2C3O5 sodium salt is introduced as a highly efficient, cost-effective, and safe cathode sodiation additive. This sustainable sodium salt has an oxidation potential of similar to 4.0 V vs Na+/Na degrees, so it could be practically implemented into SIBs. Moreover, for the first time, we have also revealed by X-ray photoelectron spectroscopy (XPS) that in addition to the compensating Na+ ions spent in the SEI layer, the high specific capacity and capacity retention observed from electrochemical measurements are due to the formation of a thinner and more stable cathode-electrolyte interphase (CEI) on the P2-Na2/3Mn0.8Fe0.1Ti0.1O2 while using such a cathode sodiation additive. Half-cell studies with P2-Na2/3Mn0.8Fe0.1Ti0.1O2 cathodes show a 27% increase in the specific capacity (164 mAh g(P2)(-1)) with cathode sodiation additives. Full-cell studies with the HC anode show a 4 times increase in the specific capacity of P2-Na2/3Mn0.8Fe0.1Ti0.1O2. This work provides notable insights into and avenues toward the development of SIBs.
更多
查看译文
关键词
sacrificial sodium salt, cathode-electrolyte interphase, sodiation cathode additive, post-mortem analysis, sodium-ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要