A novel polymeric fibrous microstructured biodegradable small-caliber tubular scaffold for cardiovascular tissue engineering

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE(2021)

引用 15|浏览0
暂无评分
摘要
Increasing morbidity of cardiovascular diseases in modern society has made it crucial to develop artificial small-caliber cardiovascular grafts for surgical intervention of diseased natural arteries, as alternatives to the gold standard autologous implants. Synthetic small-caliber grafts are still not in use due to increased risk of restenosis, lack of lumen re-endothelialization and mechanical mismatch, leading sometimes either to graft failure or to unsuccessful remodeling and pathology of the distal parts of the anastomosed healthy vascular tissues. In this work, we aimed to synthesize small-caliber polymeric (polycaprolactone) tissue-engineered vascular scaffolds that mimic the structure and biomechanics of natural vessels. Electrospinning was implemented to prepare microstructured polymeric membranes with controlled axis-parallel fiber alignment. Consequently, we designed small-caliber multilayer anisotropic biodegradable nanofibrous tubular scaffolds, giving attention to their radial compliance. Polycaprolactone scaffold morphology and mechanical properties were assessed, quantified, and compared with those of native vessels and commercial synthetic grafts. Results showed a highly hydrophobic scaffold material with a three-layered tubular morphology, 4-mm internal diameter/0.25 ± 0.09-mm thickness, consisting of predominantly axially aligned thin (1.156 ± 0.447 μm), homogeneous and continuous microfibers, with adequate (17.702 ± 5.369 μm) pore size, potentially able to promote cell infiltration in vivo. In vitro accelerated degradation showed a 5% mass loss within 17–25 weeks. Mechanical anisotropy was attained as a result, almost one order of magnitude difference of the elastic modulus (18 ± 3 MPa axially/1 ± 0.3 MPa circumferentially), like that of natural arterial walls. Furthermore, a desirable radial compliance (5.04 ± 0.82%, within the physiological pressure range) as well as cyclic stability of the tubular scaffold was achieved. Finally, cytotoxicity evaluation of the polymeric scaffolds revealed that the materials were nontoxic and did not release substances harmful to living cells (over 80% cell viability achieved).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要