Ionic Liquid-Induced Phase-Separated Domains In Lipid Multilayers Probed By X-Ray Scattering Studies

ACS OMEGA(2021)

引用 9|浏览5
暂无评分
摘要
A cellular membrane, primarily a lipid bilayer, surrounds the internal components of a biological cell from the external components. This self-assembled bilayer is known to be perturbed by ionic liquids (ILs) causing malfunctioning of a cellular organism. In the present study, surface-sensitive X-ray scattering techniques have been employed to understand this structural perturbation in a lipid multilayer system formed by a zwitterionic phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. The ammonium and phosphonium-based ILs with methanesulfonate anions are observed to induce phase-separated domains in the plane of a bilayer. The lamellar X-ray diffraction peaks suggest these domains to correlate across the bilayers in a smectic liquid crystalline phase. This induced IL-rich lamellar phase has a very low lamellar repeat distance, suggesting the formation of an interdigitated bilayer. The IL-poor phase closely related to the pristine lipid phase shows a decrement in the in-plane chain lattice parameters with a reduced tilt angle. The ammonium and phosphonium-based ILs with a relatively bulky anion, ptoluenemethanesulfonate, have shown a similar effect.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要