Strong Electronic Coupling-Induced Ultrafast Charge Transfer In Donor-Pyrene-Acceptor Systems

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2021)

引用 7|浏览3
暂无评分
摘要
In this study, we decipher the charge transfer (CT) processes in donor-pyreneacceptor (DPA) molecules via various time-resolved spectroscopic measurements. It has been challenging to unravel the ultrafast CT dynamics in DPA molecules because they exhibit an initial CT emission in the same spectral range as the locally excited (LE) emission. However, we finally observed the CT rate of similar to 200 fs in DPA molecules from the time-resolved fluorescence anisotropy decay profiles. Our measurements allow us to suggest that the LE and CT states of DPA systems have isoenergetic potential surfaces and that the introduction of the acceptor to the pyrene moiety gives rise to strong electronic coupling between the LE and CT states. Therefore, we determined that this solvent-independent ultrafast CT occurs through the adiabatic potential energy surface and that the CT characteristics are enhanced in DPA compared to the donorpyrene-donor system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要