Rice Calcium/Calmodulin-Dependent Protein Kinase Directly Phosphorylates A Mitogen-Activated Protein Kinase Kinase To Regulate Abscisic Acid Responses

PLANT CELL(2021)

引用 29|浏览3
暂无评分
摘要
Calcium (Ca2+)/calmodulin (CaM)-dependent protein kinase (CCaMK) is an important positive regulator of abscisic acid (ABA) and abiotic stress signaling in plants and is believed to act upstream of mitogen-activated protein kinase (MAPK) in ABA signaling. However, it is unclear how CCaMK activates MAPK in ABA signaling. Here, we show that OsDMI3, a rice (Oryza sativa) CCaMK, directly interacts with and phosphorylates OsMKK1, a MAPK kinase (MKK) in rice, in vitro and in vivo. OsDMI3 was found to directly phosphorylate Thr-25 in the N-terminus of OsMKK1, and this Thr-25 phosphorylation is OsDMI3-specific in ABA signaling. The activation of OsMKK1 and its downstream kinase OsMPK1 is dependent on Thr-25 phosphorylation of OsMKK1 in ABA signaling. Moreover, ABA treatment induces phosphorylation in the activation loop of OsMKK1, and the two phosphorylations, in the N-terminus and in the activation loop, are independent. Further analyses revealed that OsDMI3-mediated phosphorylation of OsMKK1 positively regulates ABA responses in seed germination, root growth, and tolerance to both water stress and oxidative stress. Our results indicate that OsMKK1 is a direct target of OsDMI3, and OsDMI3-mediated phosphorylation of OsMKK1 plays an important role in activating the MAPK cascade and ABA signaling.
更多
查看译文
关键词
protein kinase,abscisic acid responses,rice,calmodulin-dependent,mitogen-activated
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要