Integrated Mof-Mesh And Tempo-Grafted Carbon Fiber As A Sandwich-Like Catalytic System For Selective Valorization Of Lignin-Derived Compound Under Microwave Irradiation

CHEMICAL ENGINEERING JOURNAL(2021)

引用 9|浏览1
暂无评分
摘要
Oxidation of vanillyl alcohol to vanillin represents a critical step towards sustainable valorization of lignocellulosic biomass. Although catalytic oxidation of vanillyl alcohol by Cu and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) is promising for vanillyl alcohol oxidation, the traditional Cu/TEMPO adopts homogeneous Cu ions and TEMPO, which are difficult for recovery and reuse. In this study, a unique sandwich-like catalytic system (SCS), which comprises HKUST-1 mesh and TEMPO-grafted on carbon cloth, is developed as a heterogeneous catalyst for vanillyl alcohol oxidation. Through the electro-chemical technique, copper (Cu) mesh is used as a source of Cu to grow HKUST-1 directly, whereas carbon cloth is functionalized by TEMPO via covalent bonds. These resultant materials are then stacked to achieve layer-by-layer contacts between HKUST-1 and TEMPO, and enable flow-through reactions of VAL oxidation. Especially, such a SCS exhibits much higher conversion of vanillyl alcohol to vanillin under microwave irradiation than conventional oven heating. SCS could achieve 100% of conversion, 100% of selectivity and 100% of yield of vanillin at 120 degrees C for 60 min. This full conversion of vanillyl alcohol to vanillin surpasses almost all the reported values by other processes in literature, and SCS could be also reusable and continuously implemented for vanillyl alcohol conversion to vanillin. The used HKUST-1 mesh could retain crystalline structures of HKUST-1, whereas TEMPO is also preserved on TEMPO@CC, indicating that SCS would be a stable and reusable integrated catalyst for vanillyl alcohol oxidation to vanillin.
更多
查看译文
关键词
Hybrid mesh, MOFs, HKUST-1, Carbon cloth, Lignin, Vanillyl alcohol, Vanillin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要