A New Model For The Optimal Structural Context For Giant Porphyry Copper Deposit Formation

GEOLOGY(2021)

引用 12|浏览1
暂无评分
摘要
Porphyry-type deposits are the main global source of copper and molybdenum. An improved understanding of the most favorable structural settings for the emplacement of these deposits is necessary for successful exploration, particularly considering that most future discoveries will be made under cover based on conceptual target generation. A common view is that porphyry deposits are preferentially emplaced in pull-apart basins within strike-slip fault systems that favor local extension within a regional compressive to transpressive tectonic regime. However, the role of such a structural context in magma storage and evolution in the upper crust remains unclear. In this work, we propose a new model based on the integration of structural data and the geometry of magmatic-hydrothermal systems from the main Andean porphyry Cu-Mo metallogenic belts and from the active volcanic arc of southern Chile. We suggest that the magma differentiation and volatile accumulation required for the formation of a porphyry deposit is best achieved when the fault system controlling magma ascent is strongly misoriented for reactivation with respect to the prevailing stress field. When magmas and fluids are channeled by faults favorably oriented for extension (approximately normal to ?3), they form sets of parallel, subvertical dikes and veins, which are common both during the late stages of the evolution of porphyry systems and in the epithermal environment. This new model has direct implications for conceptual mineral exploration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要