Structural and radiation shielding features for a new series of borate glass samples: part I

The European Physical Journal Plus(2021)

引用 21|浏览4
暂无评分
摘要
In this work, five glass samples with a composition (80 − x ) B 2 O 3 –10ZnO–10CdO– x BaO, where ( x = 10, 15, 20, 25, and 30 mol%), were fabricated by a standard melt-quench method. The current glass composition structure was explored via Fourier transform infrared (FTIR) and X-ray diffraction (XRD). XRD pattern proves an absence of sharp peaks, affirming the amorphous nature of the prepared samples. FTIR spectrum within the range of 1650–400 cm −1 clarifies the functional groups’ existence and the variation in BO 3 and BO 4 with the addition of BaO. The obtained results show a direct relationship between the density and the BaO contents. In contrast, the relation between the BaO and Poisson’s ratio and packing density is inverse. The supplement of BaO to the glass system gradually drove to a slight reduction in glass stability. Furthermore, the mass attenuation coefficient ( μ / ρ ) was defined experimentally by using two sources ( 137 Cs and 166 Ho) with five energies (0.184, 0.280, 0.661, 0.710, and 0.810 MeV). This range of energy can be used in nuclear medicine fields. The excellent agreement between experimental and XCOM values is evident. Based on the experimental results, several radiation shielding properties, including linear attenuation coefficient, effective atomic number ( Z eff ), half-value layer, mean free path, and tenth value layer, were computed. The results indicate that the sample G5 has a superior photon shielding competence compared with other standard shielding materials. Lastly, it can conclude that the prepared glasses may be used in different sectors as a radiation shielding material.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要