The Effects Of Infill On Hydrogen Tank Temperature Distribution During Fast Fill

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY(2021)

引用 16|浏览7
暂无评分
摘要
The temperature rise of hydrogen tank during fast fill poses challenge on the safety of hydrogen-powered vehicles. Researchers have been continuously looking for methods to mitigate the challenge of overheating. In this paper, we proposed an innovative solution by introducing porous infill in gas tanks to slow down gas-to-wall heat transfer. The porosity of the infill is no less than 97% to maintain the volume capacity of gas tanks. To evaluate the impact of infill heat capacity, we modelled the filling process with a lumped-parameter model and obtained various time-independent temperature evolution curves. Then, we set up a 2D and a 3D finite volume model and investigated the spatial distribution of temperature rise. Four cases with different infill properties were simulated and compared. At the end of the fast fill, the infill resulted in lower tank wall temperature at the cost of higher gas temperature. The combined effect of internal gas temperature and gas-phase effective thermal conductivity largely determines the final temperature distribution. The presence of infill effectively slowed down convective heat transfer, yet overly resistive porous infill may overly slow down the gas flow and result in thermal stratification. Further studies on infill design can be done to seek more effective solutions. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Hydrogen storage safety, Fast fill, Infill, Thermal simulation, Numerical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要