Communication efficient parallel reinforcement learning.

UAI(2021)

引用 8|浏览5
暂无评分
摘要
We consider the problem where $M$ agents interact with $M$ identical and independent environments with $S$ states and $A$ actions using reinforcement learning for $T$ rounds. The agents share their data with a central server to minimize their regret. We aim to find an algorithm that allows the agents to minimize the regret with infrequent communication rounds. We provide \NAM\ which runs at each agent and prove that the total cumulative regret of $M$ agents is upper bounded as $\Tilde{O}(DS\sqrt{MAT})$ for a Markov Decision Process with diameter $D$, number of states $S$, and number of actions $A$. The agents synchronize after their visitations to any state-action pair exceeds a certain threshold. Using this, we obtain a bound of $O\left(MSA\log(MT)\right)$ on the total number of communications rounds. Finally, we evaluate the algorithm against multiple environments and demonstrate that the proposed algorithm performs at par with an always communication version of the UCRL2 algorithm, while with significantly lower communication.
更多
查看译文
关键词
reinforcement,communication,learning,efficient
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要