Mobility Of Arsenic In The Growth Media Of Rice Plants (Oryza Sativa Subsp. Japonica. 'Koshihikari') With Exposure To Copper Oxide Nanoparticles In A Life-Cycle Greenhouse Study

SCIENCE OF THE TOTAL ENVIRONMENT(2021)

引用 9|浏览3
暂无评分
摘要
The increasing arsenic (As) concentration in agriculture media poses increasing risks to both environment and human health. Arsenic mobility determines its bioavailability and entry into the food chain. Nanoparticle application may help to control As mobility in crop cultivation media, and thus decreasing As bioavailability for plants. This research studied the adsorption kinetics of As(V) on copper oxide nanoparticles (nCuO) and nCuO dissolution in a hydroponic solution, and the effects of nCuO on As mobility in a greenhouse system exposed to As (V) addition of 10 mg/kg and nCuO at 0.1-100 mg/L for a life-cycle growth of rice. Arsenic adsorption was dependent on both the total mass and the concentration of nCuO as well as the initial concentration of As(V), while nCuO dissolution was mainly dependent on nCuO concentration regardless of As(V). Arsenic in the simulated paddy was quickly mobilized from soil to aqueous phase during week 1, and further interacted with components in water phase, sediment-water interfacial transition and rice plants. Copper (Cu) and As speciation in the soil were observed by X-Ray Absorption Near Edge Spectrometry. Dissolved Cu was complexed with organic ligands. As(V) was adsorbed to kaolinite, or reduced to As(III) and adsorbed to ferrihydrite. Percent As removal from water phase in the growth container was determined by both nCuO application and As(V) initial concentration. Based on our previous finding that As accumulation in rice grains was significantly decreased by nCuO at 50 mg/L and the results of this study on As adsorption capacity of nCuO and As removal from water due to nCuO application, nCuO at 50 mg/L was proposed to be an appropriate application in rice paddy to immobilize As. Further research is needed in actual agriculture to verify the appropriate nCuO application and get an integrated beneficial effect for rice plants and humans. (c) 2021 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Nano-agriculture, Adsorption, Dissolution, Bioavailability, Interactive effects
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要