Limonoids Isolated From Fruits Of Swietenia Macrophylla King Enhance Glucose Consumption In Insulin-Resistant Hepg2 Cells Via Activating Ppar Gamma

JOURNAL OF FOOD BIOCHEMISTRY(2021)

引用 8|浏览3
暂无评分
摘要
The fruits of Swietenia macrophylla King have been processed commercially to a variety of health foods and healthcare products and exhibited antidiabetic, anti-inflammatory, antimutagenicity, antitumor activity, and so on. This study was aimed to examine the glucose consumption in human hepatoma HepG2 cells and the expression of PPAR gamma of limonoids isolated from the fruits of S. macrophylla. The phytochemical investigation of the fruits led to the isolation of ten limonoids which structures were elucidated by spectroscopic analysis as swietenine (1), khayasin T (2), 6-deoxyswietenine (3), 3-O-tigloylswietenolide (4), swietenolide (5), 3,6-O,O-diacetylswietenolide (6), 7-deacetoxy-7-oxogedunin (7), fissinolide (8), proceranolide (9), 7-deacetoxy-7 alpha-hydroxygedunin (10), and compound 10 was isolated from this plant for the first time. The glucose consumption assay revealed that compounds 1, 2, 3, 5, and 9 could promote glucose consumption significantly in normal hyperglycemia-induced HepG2 cells, furthermore, compounds 1, 5, and 9 had a better effect on promoting glucose consumption in insulin-resistant HepG2 cells. In addition, compounds 1 and 5 could dramatically enhance the expression of PPAR gamma protein in insulin-resistant HepG2 cells according to the western blotting analysis result.Practical applications Swietenia macrophylla King belongs to the family Meliaceae and the fruits have been exhibited a wide range of biological activities, such as antidiabetic, anti-inflammatory, antimutagenicity, antitumor activity, and so on. Phytochemical investigations of S. macrophylla have revealed that limonoids and triterpenoids were effective antidiabetic agents. However, the mechanism of these limonoids to antidiabetic activity is unclear. In this study, limonoids were isolated from the fruit of S. macrophylla and their effects on the glucose consumption of insulin-resistant HepG2 cells were studied. The results showed that compounds 1 and 5 could dramatically enhance the expression of PPAR gamma protein in insulin-resistant HepG2 cells, which will give aid to explore the mechanism of these limonoids in the treatment of type 2 diabetes. Therefore, this research might facilitate further research and development of S. macrophylla.
更多
查看译文
关键词
glucose consumption, HepG2 cells, limonoids, PPAR&#947, Swietenia macrophylla
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要