Decimeter-Scale Atomically Thin Graphene Membranes For Gas-Liquid Separation

ACS APPLIED MATERIALS & INTERFACES(2021)

引用 11|浏览18
暂无评分
摘要
Graphene holds great potential for fabricating ultrathin selective membranes possessing high permeability without compromising selectivity and has attracted intensive interest in developing high-performance separation membranes for desalination, natural gas purification, hemodialysis, distillation, and other gas-liquid separation. However, the scalable and cost-effective synthesis of nanoporous graphene membranes, especially designing a method to produce an appropriate porous polymer substrate, remains very challenging. Here, we report a facile route to fabricate decimeter-scale (similar to 15 X 10 cm(2)) nanoporous atomically thin membranes (NATMs) via the direct casting of the porous polymer substrate onto graphene, which was produced by chemical vapor deposition (CVD). After the vapor-induced phase-inversion process under proper experimental conditions (60 degrees C and 60% humidity), the flexible nanoporous polymer substrate was formed. The resultant skin-free polymer substrate, which had the proper pore size and a uniform spongelike structure, provided enough mechanical support without reducing the permeance of the NATMs. It was demonstrated that after creating nanopores by the O-2 plasma treatment, the NATMs were salt-resistant and simultaneously showed 3-5 times higher gas (CO2) permeance than the state-of-the-art commercial polymeric membranes. Therefore, our work provides guidance for the technological developments of graphene-based membranes and bridges the gap between the laboratory-scale "proof-of-concept" and the practical applications of NATMs in the industry.
更多
查看译文
关键词
nanoporous atomically thin membranes (NATMs), CVD graphene, nanoscale pores, gas-liquid separation, large area
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要