Modeling and experimental validation of covalent immobilization of Trametes maxima laccase on glyoxyl and MANA-Sepharose CL 4B supports, for the use in bioconversion of residual colorants

BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY(2022)

引用 2|浏览9
暂无评分
摘要
Our novel strategy for the rational design of immobilized derivatives (RDID) is directed to predict the behavior of the protein immobilized derivative before its synthesis, by the usage of mathematic algorithms and bioinformatics tools. However, this approach needs to be validated for each target enzyme. The objective of this work was to validate the RDID strategy for covalent immobilization of the enzyme laccase from Trametes maxima MUCL 44155 on glyoxyl- and monoaminoethyl-N-aminoethyl (MANA)-Sepharose CL 4B supports. Protein surface clusters, more probable configurations of the protein-supports systems at immobilization pHs, immobilized enzyme activity, and protein load were predicted by RDID1.0 software. Afterward, immobilization was performed and predictions were experimentally confirmed. As a result, the laccase-MANA-Sepharose CL 4B immobilized derivative is better than laccase-glyoxyl-Sepharose CL 4B in predicted immobilized derivative activity (63.6% vs. 29.5%). Activity prediction was confirmed by an experimentally expressed enzymatic activity of 68%, using 2,6-dimethoxyphenol as substrate. Experimental maximum protein load matches the estimated value (11.2 +/- 1.3 vs. 12.1 protein mg/support mL). The laccase-MANA-Sepharose CL 4B biocatalyst has a high specificity for the acid blue 62 colorant. The results obtained in this work suggest the possibility of using this biocatalyst for wastewater treatment.
更多
查看译文
关键词
colorant bioconversion, covalent immobilization, immobilized derivative activity, laccase, rational design of immobilized derivatives strategy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要