Structural, Optical, And Antibacterial Efficacy Of Pure And Zinc-Doped Copper Oxide Against Pathogenic Bacteria

NANOMATERIALS(2021)

引用 43|浏览6
暂无评分
摘要
Copper oxide and Zinc (Zn)-doped Copper oxide nanostructures (CuO-NSs) are successfully synthesized by using a hydrothermal technique. The as-obtained pure and Zn-doped CuO-NSs were tested to study the effect of doping in CuO on structural, optical, and antibacterial properties. The band gap of the nanostructures is calculated by using the Tauc plot. Our results have shown that the band gap of CuO reduces with the addition of Zinc. Optimization of processing conditions and concentration of precursors leads to the formation of pine needles and sea urchin-like nanostructures. The antibacterial properties of obtained Zn-doped CuO-NSs are observed against Gram-negative (Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria via the agar well diffusion method. Zn doped s are found to have more effective bacterial resistance than pure CuO. The improved antibacterial activity is attributed to the reactive oxygen species (ROS) generation.
更多
查看译文
关键词
copper oxide, zinc-doping, hydrothermal, antibacterial activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要