Measurement accuracy of prototype non-contrast, compressed sensing-based, respiratory motion-resolved whole heart cardiovascular magnetic resonance angiography for the assessment of thoracic aortic dilatation: comparison with computed tomography angiography

JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE(2021)

引用 4|浏览1
暂无评分
摘要
Background Patients with thoracic aortic dilatation who undergo annual computed tomography angiography (CTA) are subject to repeated radiation and contrast exposure. The purpose of this study was to evaluate the feasibility of a non-contrast, respiratory motion-resolved whole-heart cardiovascular magnetic resonance angiography (CMRA) technique against reference standard CTA, for the quantitative assessment of cardiovascular anatomy and monitoring of disease progression in patients with thoracic aortic dilatation. Methods Twenty-four patients (68.6 ± 9.8 years) with thoracic aortic dilatation prospectively underwent clinical CTA and research 1.5T CMRA between July 2017 and November 2018. Scans were repeated in 15 patients 1 year later. A prototype free-breathing 3D radial balanced steady-state free-precession whole-heart CMRA sequence was used in combination with compressed sensing-based reconstruction. Area, circumference, and diameter measurements were obtained at seven aortic levels by two experienced and two inexperienced readers. In addition, area and diameter measurements of the cardiac chambers, pulmonary arteries and pulmonary veins were also obtained. Agreement between the two modalities was assessed with intraclass correlation coefficient (ICC) analysis, Bland–Altman plots and scatter plots. Results Area, circumference and diameter measurements on a per-level analysis showed good or excellent agreement between CTA and CMRA (ICCs > 0.84). Means of differences on Bland–Altman plots were: area 0.0 cm 2 [− 1.7; 1.6]; circumference 1.0 mm [− 10.0; 12.0], and diameter 0.6 mm [− 2.6; 3.6]. Area and diameter measurements of the left cardiac chambers showed good agreement (ICCs > 0.80), while moderate to good agreement was observed for the right chambers (all ICCs > 0.56). Similar good to excellent inter-modality agreement was shown for the pulmonary arteries and veins (ICC range 0.79–0.93), with the exception of the left lower pulmonary vein (ICC < 0.51). Inter-reader assessment demonstrated mostly good or excellent agreement for both CTA and CMRA measurements on a per-level analysis (ICCs > 0.64). Difference in maximum aortic diameter measurements at baseline vs follow up showed excellent agreement between CMRA and CTA (ICC = 0.91). Conclusions The radial whole-heart CMRA technique combined with respiratory motion-resolved reconstruction provides comparable anatomical measurements of the thoracic aorta and cardiac structures as the reference standard CTA. It could potentially be used to diagnose and monitor patients with thoracic aortic dilatation without exposing them to radiation or contrast media.
更多
查看译文
关键词
Aortic dilatation, Aortic aneurysm, Magnetic resonance angiography, Compressed sensing, Computed tomography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要