The Power Of Literal Equivalence In Model Counting

THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE(2021)

引用 9|浏览74
暂无评分
摘要
The past two decades have seen the significant improvements of the scalability of practical model counters, which have been influential in many applications from artificial intelligence to formal verification. While most of exact counters fall into two categories, search-based and compilation-based, Huang and Darwiche's remarkable observation ties these two categories: the trace of a search-based exact model counter corresponds to a Decision-DNNF formula. Taking advantage of literal equivalences, this paper designs an efficient model counting technique such that its trace is a generalization of Decision-DNNF. We first propose a generalization of Decision-DNNF, called CCDD, to capture literal equivalences, then show that CCDD supports model counting in linear time, and finally design a model counter, called ExactMC, whose trace corresponds to CCDD. We perform an extensive experimental evaluation over a comprehensive set of benchmarks and conduct performance comparison of ExactMC vis-a-vis the state of the art counters, c2d, Dsharp, miniC2D, D4, ADDMC, and Ganak. Our empirical evaluation demonstrates ExactMC can solve 885 instances while the prior state of the art solved only 843 instances, representing a significant improvement of 42 instances.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要