A Deep Reinforcement Learning Approach To First-Order Logic Theorem Proving

THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE(2021)

引用 25|浏览153
暂无评分
摘要
Automated theorem provers have traditionally relied on manually tuned heuristics to guide how they perform proof search. Deep reinforcement learning has been proposed as a way to obviate the need for such heuristics, however, its deployment in automated theorem proving remains a challenge. In this paper we introduce TRAIL, a system that applies deep reinforcement learning to saturation-based theorem proving. TRAIL leverages (a) a novel neural representation of the state of a theorem prover and (b) a novel characterization of the inference selection process in terms of an attention-based action policy. We show through systematic analysis that these mechanisms allow TRAIL to significantly outperform previous reinforcement-learning-based theorem provers on two benchmark datasets for first-order logic automated theorem proving (proving around 15% more theorems).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要